Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Ken Tajima is active.

Publication


Featured researches published by Ken Tajima.


Proceedings of the National Academy of Sciences of the United States of America | 2012

Homeobox B9 induces epithelial-to-mesenchymal transition-associated radioresistance by accelerating DNA damage responses

Naokazu Chiba; Valentine Comaills; Bunsyo Shiotani; Fumiyuki Takahashi; Toshiyuki Shimada; Ken Tajima; Daniel Winokur; Tetsu Hayashida; Henning Willers; Elena F. Brachtel; Maria dM Vivanco; Daniel A. Haber; Lee Zou; Shyamala Maheswaran

Homeobox 9 (HOXB9), a nontransforming transcription factor overexpressed in breast cancer, alters tumor cell fate and promotes tumor progression and metastasis. Here we show that HOXB9 confers resistance to ionizing radiation by promoting DNA damage response. In nonirradiated cells, HOXB9 induces spontaneous DNA damage, phosphorylated histone 2AX and p53 binding protein 1 foci, and increases baseline ataxia telangiectasia mutated (ATM) phosphorylation. Upon ionizing radiation, ATM is hyperactivated in HOXB9-expressing cells during the early stages of the double-stranded DNA break (DSB) response, accelerating accumulation of phosphorylated histone 2AX, mediator of DNA-damage checkpoint 1, and p53 binding protein 1, at DSBs and enhances DSB repair. The effect of HOXB9 on the response to ionizing radiation requires the baseline ATM activity before irradiation and epithelial-to-mesenchymal transition induced by TGF-β, a HOXB9 transcriptional target. Our results reveal the impact of a HOXB9–TGF-β–ATM axis on checkpoint activation and DNA repair, suggesting that TGF-β may be a key factor that links tumor microenvironment, tumor cell fate, DNA damage response, and radioresistance in a subset of HOXB9-overexpressing breast tumors.


PLOS ONE | 2014

Hypoxia increases gefitinib-resistant lung cancer stem cells through the activation of insulin-like growth factor 1 receptor.

Akiko Murakami; Fumiyuki Takahashi; Fariz Nurwidya; Isao Kobayashi; Kunihiko Minakata; Muneaki Hashimoto; Takeshi Nara; Motoyasu Kato; Ken Tajima; Naoko Shimada; Shin-ichiro Iwakami; Mariko Moriyama; Hiroyuki Moriyama; Fumiaki Koizumi; Kazuhisa Takahashi

Accumulating evidence indicates that a small population of cancer stem cells (CSCs) is involved in intrinsic resistance to cancer treatment. The hypoxic microenvironment is an important stem cell niche that promotes the persistence of CSCs in tumors. Our aim here was to elucidate the role of hypoxia and CSCs in the resistance to gefitinib in non-small cell lung cancer (NSCLC) with activating epidermal growth factor receptor (EGFR) mutation. NSCLC cell lines, PC9 and HCC827, which express the EGFR exon 19 deletion mutations, were exposed to high concentration of gefitinib under normoxic or hypoxic conditions. Seven days after gefitinib exposure, a small fraction of viable cells were detected, and these were referred to as “gefitinib-resistant persisters” (GRPs). CD133, Oct4, Sox2, Nanog, CXCR4, and ALDH1A1–all genes involved in stemness–were highly expressed in GRPs in PC9 and HCC827 cells, and PC9 GRPs exhibited a high potential for tumorigenicity in vivo. The expression of insulin-like growth factor 1 (IGF1) was also upregulated and IGF1 receptor (IGF1R) was activated on GRPs. Importantly, hypoxic exposure significantly increased sphere formation, reflecting the self-renewal capability, and the population of CD133- and Oct4-positive GRPs. Additionally, hypoxia upregulated IGF1 expression through hypoxia-inducible factor 1α (HIF1α), and markedly promoted the activation of IGF1R on GRPs. Knockdown of IGF1 expression significantly reduced phosphorylated IGF1R-expressing GRPs under hypoxic conditions. Finally, inhibition of HIF1α or IGF1R by specific inhibitors significantly decreased the population of CD133- and Oct4-positive GRPs, which were increased by hypoxia in PC9 and HCC827 cells. Collectively, these findings suggest that hypoxia increased the population of lung CSCs resistant to gefitinib in EGFR mutation-positive NSCLC by activating IGF1R. Targeting the IGF1R pathway may be a promising strategy for overcoming gefitinib resistance in EGFR mutation-positive NSCLC induced by lung CSCs and microenvironment factors such as tumor hypoxia.


Cell Reports | 2013

Dynamic Chromatin Modification Sustains Epithelial-Mesenchymal Transition following Inducible Expression of Snail-1

Sarah Javaid; Jianmin Zhang; Endre Anderssen; Josh C. Black; Ben S. Wittner; Ken Tajima; David T. Ting; Gromoslaw A. Smolen; Matthew J. Zubrowski; Rushil Desai; Shyamala Maheswaran; Sridhar Ramaswamy; Johnathan R. Whetstine; Daniel A. Haber

SUMMARY Epithelial-mesenchymal transition (EMT) is thought to contribute to cancer metastasis, but its underlying mechanisms are not well understood. To define early steps in this cellular transformation, we analyzed human mammary epithelial cells with tightly regulated expression of Snail-1, a master regulator of EMT. After Snail-1 induction, epithelial markers were repressed within 6 hr, and mesenchymal genes were induced at 24 hr. Snail-1 binding to its target promoters was transient (6–48 hr) despite continued protein expression, and it was followed by both transient and long-lasting chromatin changes. Pharmacological inhibition of selected histone acetylation and demethylation pathways suppressed the induction as well as the maintenance of Snail-1-mediated EMT. Thus, EMT involves an epigenetic switch that may be prevented or reversed with the use of small-molecule inhibitors of chromatin modifiers.


Oncogene | 2011

Breast tumor progression induced by loss of BTG2 expression is inhibited by targeted therapy with the ErbB/HER inhibitor lapatinib

Fumiyuki Takahashi; Naokazu Chiba; Ken Tajima; Tetsu Hayashida; Toshiyuki Shimada; Masato Takahashi; Hiroyuki Moriyama; Elena F. Brachtel; E J Edelman; Sridhar Ramaswamy; Shyamala Maheswaran

The B-cell translocation gene-2 (BTG2), a p53-inducible gene, is suppressed in mammary epithelial cells during gestation and lactation. In human breast cancer, decreased BTG2 expression correlates with high tumor grade and size, p53 status, blood and lymph vessel invasion, local and metastatic recurrence and decrease in overall survival, suggesting that suppression of BTG2 has a critical role in disease progression. To analyze the role of BTG2 in breast cancer progression, BTG2 expression was knocked down in mammary epithelial cells. Suppression of BTG2 enhances the motility of cells in vitro and tumor growth and metastasis in vivo. The effects of BTG2 knockdown are mediated through stabilization of the human epidermal growth factor receptor (HER) ligands neuregulin and epiregulin and activation of the HER2 and HER3 receptors, leading to elevated AKT phosphorylation. Suppression of HER activation using the tyrosine kinase inhibitor lapatinib abrogates the effects of BTG2 knockdown, including the increased cell migration observed in vitro and the enhancement of tumorigenesis and metastasis in vivo. These results link BTG2-dependent effects on tumor progression to ErbB receptor signaling, and raise the possibility that targeted inhibition of this pathway may be relevant in the treatment of breast cancers that have reduced BTG2 expression.


Cancer Science | 2012

Hypoxia induces gefitinib resistance in non-small-cell lung cancer with both mutant and wild-type epidermal growth factor receptors

Kunihiko Minakata; Fumiyuki Takahashi; Takeshi Nara; Muneaki Hashimoto; Ken Tajima; Akiko Murakami; Fariz Nurwidya; Suzu Yae; Fumiaki Koizumi; Hiroyuki Moriyama; Kuniaki Seyama; Kazuto Nishio; Kazuhisa Takahashi

Somatic mutations in the epidermal growth factor receptor (EGFR) gene, such as exon 19 deletion mutations, are important factors in determining therapeutic responses to gefitinib in non‐small‐cell lung cancer (NSCLC). However, some patients have activating mutations in EGFR and show poor responses to gefitinib. In this study, we examined three NSCLC cell lines, HCC827, PC9, and HCC2935, that expressed an EGFR exon 19 deletion mutation. All cells expressed mutant EGFR, but the PC9 and HCC2935 cells also expressed wild‐type EGFR. The HCC827 cells were highly sensitive to gefitinib under both normoxia and hypoxia. However, the PC9 and HCC2935 cells were more resistant to gefitinib under hypoxic conditions compared to normoxia. Phosphorylation of EGFR and ERK was suppressed with gefitinib treatment to a lesser extent under hypoxia. The expression of transforming growth factor‐α (TGFα) was dramatically upregulated under hypoxia, and the knockdown of TGFα or hypoxia‐inducible factor‐1α (HIF1α) reversed the resistance to gefitinib in hypoxic PC9 and HCC2935 cells. Finally, introduction of the wild‐type EGFR gene into the HCC827 cells caused resistance to gefitinib under hypoxia. This phenomenon was also reversed by the knockdown of TGFα or HIF1α. Our results indicate that hypoxia causes gefitinib resistance in EGFR‐mutant NSCLC through the activation of wild‐type EGFR mediated by the upregulation of TGFα. The presence of wild‐type and mutant EGFR along with tumor hypoxia are important factors that should be considered when treating NSCLC patients with gefitinib.


Oncogene | 2010

Osteopontin-mediated enhanced hyaluronan binding induces multidrug resistance in mesothelioma cells

Ken Tajima; Rina Ohashi; Yoshitaka Sekido; Toyoaki Hida; Takeshi Nara; Muneaki Hashimoto; Shin-ichiro Iwakami; Kunihiko Minakata; Toshifumi Yae; Fumiyuki Takahashi; Hideyuki Saya; Kazuhisa Takahashi

Malignant pleural mesothelioma (MPM) is resistant to chemotherapy and thus shows a dismal prognosis. Osteopontin (OPN), a secreted noncollagenous and phosphoprotein, is suggested to be involved in the pathogenesis of MPM. However, the precise role of OPN, especially in the multidrug resistance of MPM, remains to be elucidated. We therefore established stable transfectants (ACC-MESO-1/OPN), which constitutively express OPN, to determine its role in the chemoresistance observed in MPM. The introduction of the OPN gene provides MPM cells with upregulated multidrug resistance through the mechanism of enhanced hyaluronate (HA) binding. The expression of CD44 variant isoforms, which inhibit HA binding, significantly decreased in ACC–MESO–1/OPN cells in comparison to control transfectants. Interestingly, the inhibition of the HA-CD44 interaction abrogated multidrug resistance in the ACC–MESO–1/OPN, thus suggesting the involvement of the surviving signal emanating from the HA-CD44 interaction. An enhanced level of the p-Akt in ACC–MESO–1/OPN cells was observed, and was diminished by CD44 siRNA. Inhibition of the Akt phosphorylation increased in number of the cells underwent apoptosis induced by NVB, VP-16 and GEM. Collectively, these results indicate that OPN is strongly involved in multidrug resistance by enhancing the CD44 binding to HA.


Lung Cancer | 2009

Osteopontin is involved in the formation of malignant pleural effusion in lung cancer

Ri Cui; Fumiyuki Takahashi; Rina Ohashi; Masakata Yoshioka; Tao Gu; Ken Tajima; Takeshi Unnoura; Shin-ichiro Iwakami; Michihiro Hirama; Toshiji Ishiwata; Akihiko Iwase; Kazuhisa Takahashi

Malignant pleural effusion (MPE) is associated with advanced-stage lung cancer and is a poor prognostic sign for these patients. Osteopontin (OPN) is a multifunctional cytokine that is involved in the tumor progression and angiogenesis of lung cancer cells. The purpose of this study is to investigate and provide evidence for the role of OPN in the formation of MPE associated with lung cancer. In this study, we established an OPN knockdown murine lung cancer cell line, 3LL cells, utilizing the small interfering RNA (siRNA) technique. To reveal the effect of OPN on the formation of MPE associated with lung cancer, we directly injected OPN knockdown 3LL cells, 3LL/OPN siRNA, or control cells, 3LL/control siRNA, into the pleural space of C57BL/6 mice. OPN knockdown significantly reduced the formation of MPE, but did not inhibit in vivo tumor growth of 3LL cells in mice. Vascular endothelial growth factor (VEGF) concentration in MPE was markedly decreased in the 3LL/OPN siRNA in comparison with that of the 3LL/control siRNA. In vitro, recombinant OPN protein enhanced VEGF secretion from human umbilical vein endothelial cell (HUVEC) or human mesothelial cell line, Met5A cells, in a concentration-dependent manner. These results suggest that OPN is positively involved in the formation of MPE of lung cancer presumably by promoting VEGF secretion from vascular endothelial cells or mesothelial cells. OPN could be an effective target molecule for reducing MPE in lung cancer patients.


Cell Reports | 2016

Genomic Instability Is Induced by Persistent Proliferation of Cells Undergoing Epithelial-to-Mesenchymal Transition

Valentine Comaills; Lilian Kabeche; Robert Morris; Rémi Buisson; Min Yu; Marissa W. Madden; Joseph A. LiCausi; Myriam Boukhali; Ken Tajima; Shiwei Pan; Nicola Aceto; Srinjoy Sil; Yu Zheng; Tilak Sundaresan; Toshifumi Yae; Nicole Vincent Jordan; David T. Miyamoto; David T. Ting; Sridhar Ramaswamy; Wilhelm Haas; Lee Zou; Daniel A. Haber; Shyamala Maheswaran

TGF-β secreted by tumor stroma induces epithelial-to-mesenchymal transition (EMT) in cancer cells, a reversible phenotype linked to cancer progression and drug resistance. However, exposure to stromal signals may also lead to heritable changes in cancer cells, which are poorly understood. We show that epithelial cells failing to undergo proliferation arrest during TGF-β-induced EMT sustain mitotic abnormalities due to failed cytokinesis, resulting in aneuploidy. This genomic instability is associated with the suppression of multiple nuclear envelope proteins implicated in mitotic regulation and is phenocopied by modulating the expression of LaminB1. While TGF-β-induced mitotic defects in proliferating cells are reversible upon its withdrawal, the acquired genomic abnormalities persist, leading to increased tumorigenic phenotypes. In metastatic breast cancer patients, increased mesenchymal marker expression within single circulating tumor cells is correlated with genomic instability. These observations identify a mechanism whereby microenvironment-derived signals trigger heritable genetic changes within cancer cells, contributing to tumor evolution.


Respiratory investigation | 2014

Acquired resistance of non-small cell lung cancer to epidermal growth factor receptor tyrosine kinase inhibitors

Fariz Nurwidya; Fumiyuki Takahashi; Akiko Murakami; Isao Kobayashi; Motoyasu Kato; Takehito Shukuya; Ken Tajima; Naoko Shimada; Kazuhisa Takahashi

Activation of epidermal growth factor receptor (EGFR) triggers anti-apoptotic signaling, proliferation, angiogenesis, invasion, metastasis, and drug resistance, which leads to development and progression of human epithelial cancers, including non-small cell lung cancer (NSCLC). Inhibition of EGFR by tyrosine kinase inhibitors such as gefitinib and erlotinib has provided a new hope for the cure of NSCLC patients. However, acquired resistance to gefitinib and erlotinib via EGFR-mutant NSCLC has occurred through various molecular mechanisms such as T790M secondary mutation, MET amplification, hepatocyte growth factor (HGF) overexpression, PTEN downregulation, epithelial-mesenchymal transition (EMT), and other mechanisms. This review will discuss the biology of receptor tyrosine kinase inhibition and focus on the molecular mechanisms of acquired resistance to tyrosine kinase inhibitors of EGFR-mutant NSCLC.


Lung Cancer | 2009

Osteopontin is involved in the development of acquired chemo-resistance of cisplatin in small cell lung cancer

Tao Gu; Rina Ohashi; Ri Cui; Ken Tajima; Masakata Yoshioka; Shin-ichiro Iwakami; Shinichi Sasaki; Atsuko Shinohara; Takehisa Matsukawa; Jun Kobayashi; Yutaka Inaba; Kazuhisa Takahashi

Osteopontin (OPN) is a multi-functional cytokine involved in cell survival, migration and adhesion which is associated with tumorigenesis, progression and metastasis. However, the role of OPN in chemo-sensitivity of human lung cancer has not yet been elucidated. The purpose of this study is to investigate the role of OPN in chemo-sensitivity of lung cancer cells. We developed a stable OPN transfectant (SBC-3/OPN) and a control transfectant (SBC-3/NEO) from human small cell lung cancer cell line, SBC-3. SBC-3/OPN cells were more resistant to cisplatin than SBC-3/NEO cells. Multi-drug resistance-associated protein (MRP) does not appear to be involved in the development of acquired chemo-resistance, since MRP inhibitor did not alter chemo-sensitivity. After exposure to cisplatin, the apoptotic SBC-3/OPN cells were reduced in number compared to SBC-3/NEO cells. Treatment with cisplatin revealed that the expression of anti-apoptotic protein, bcl-2, was down-regulated in SBC-3/NEO cells, while that of SBC-3/OPN cells was not altered. In contrast, pro-apoptotic protein, bax, was not altered in both SBC-3/OPN and SBC-3/NEO cells, thus bcl-2/bax ratio was decreased in SBC-3/NEO but not altered in SBC-3/OPN cells. Activation of caspase-3 and caspase-9 was increased in SBC-3/NEO cells, but not in SBC-3/OPN cells. Our results suggest that OPN enhances chemo-resistance of cisplatin in SBC-3 cells by suppressing bcl-2 protein down-regulation, thereby blocking the caspase-9- and caspase-3-dependent cell apoptosis.

Collaboration


Dive into the Ken Tajima's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Kei Nakachi

Radiation Effects Research Foundation

View shared research outputs
Top Co-Authors

Avatar

Yuzo Watanabe

Kyoto Prefectural University of Medicine

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge