Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Ken Teter is active.

Publication


Featured researches published by Ken Teter.


Cellular Microbiology | 2005

Cellular internalization of cytolethal distending toxin: a new end to a known pathway

Lina Guerra; Ken Teter; Brendan N. Lilley; Bo Stenerlöw; Randall K. Holmes; Hidde L. Ploegh; Kirsten Sandvig; Monica Thelestam; Teresa Frisan

The cytolethal distending toxins (CDTs) are unique in their ability to induce DNA damage, activate checkpoint responses and cause cell cycle arrest or apoptosis in intoxicated cells. However, little is known about their cellular internalization pathway. We demonstrate that binding of the Haemophilus ducreyi CDT (HdCDT) on the plasma membrane of sensitive cells was abolished by cholesterol extraction with methyl‐β‐cyclodextrin. The toxin was internalized via the Golgi complex, and retrogradely transported to the endoplasmic reticulum (ER), as assessed by N‐linked glycosylation. Further translocation from the ER did not require the ER‐associated degradation (ERAD) pathway, and was Derlin‐1 independent. The genotoxic activity of HdCDT was dependent on its internalization and its DNase activity, as induction of DNA double‐stranded breaks was prevented in Brefeldin A‐treated cells and in cells exposed to a catalytically inactive toxin. Our data contribute to a better understanding of the CDT mode of action and highlight two important aspects of the biology of this bacterial toxin family: (i) HdCDT translocation from the ER to the nucleus does not involve the classical pathways followed by other retrogradely transported toxins and (ii) toxin internalization is crucial for execution of its genotoxic activity.


Infection and Immunity | 2002

Inhibition of endoplasmic reticulum-associated degradation in CHO cells resistant to cholera toxin, Pseudomonas aeruginosa exotoxin A, and ricin.

Ken Teter; Randall K. Holmes

ABSTRACT Many plant and bacterial toxins act upon cytosolic targets and must therefore penetrate a membrane barrier to function. One such class of toxins enters the cytosol after delivery to the endoplasmic reticulum (ER). These proteins, which include cholera toxin (CT), Pseudomonas aeruginosa exotoxin A (ETA), and ricin, move from the plasma membrane to the endosomes, pass through the Golgi apparatus, and travel to the ER. Translocation from the ER to the cytosol is hypothesized to involve the ER-associated degradation (ERAD) pathway. We developed a genetic strategy to assess the role of mammalian ERAD in toxin translocation. Populations of CHO cells were mutagenized and grown in the presence of two lethal toxins, ETA and ricin. Since these toxins bind to different surface receptors and attack distinct cytoplasmic targets, simultaneous acquisition of resistance to both would likely result from the disruption of a shared trafficking or translocation mechanism. Ten ETA- and ricin-resistant cell lines that displayed unselected resistance to CT and continued sensitivity to diphtheria toxin, which enters the cytosol directly from acidified endosomes, were screened for abnormalities in the processing of a known ERAD substrate, the Z form of α1-antitrypsin (α1AT-Z). Compared to the parental CHO cells, the rate of α1AT-Z degradation was decreased in two independent mutant cell lines. Both of these cell lines also exhibited, in comparison to the parental cells, decreased translocation and degradation of a recombinant CTA1 polypeptide. These findings demonstrated that decreased ERAD function was associated with increased cellular resistance to ER-translocating protein toxins in two independently derived mutant CHO cell lines.


Journal of Biological Chemistry | 2010

Hsp90 Is Required for Transfer of the Cholera Toxin A1 Subunit from the Endoplasmic Reticulum to the Cytosol

Michael D. Taylor; Fernando Navarro-Garcia; Jazmin Huerta; Helen Burress; Shane Massey; Keith Ireton; Ken Teter

Cholera toxin (CT) is an AB5 toxin that moves from the cell surface to the endoplasmic reticulum (ER) by retrograde vesicular transport. In the ER, the catalytic A1 subunit dissociates from the rest of the toxin and enters the cytosol by exploiting the quality control system of ER-associated degradation (ERAD). The driving force for CTA1 dislocation into the cytosol is unknown. Here, we demonstrate that the cytosolic chaperone Hsp90 is required for CTA1 passage into the cytosol. Hsp90 bound to CTA1 in an ATP-dependent manner that was blocked by geldanamycin (GA), an established Hsp90 inhibitor. CT activity against cultured cells and ileal loops was also blocked by GA, as was the ER-to-cytosol export of CTA1. Experiments using RNA interference or N-ethylcarboxamidoadenosine, a drug that inhibits ER-localized GRP94 but not cytosolic Hsp90, confirmed that the inhibitory effects of GA resulted specifically from the loss of Hsp90 activity. This work establishes a functional role for Hsp90 in the ERAD-mediated dislocation of CTA1.


Infection and Immunity | 2002

Transfer of the Cholera Toxin A1 Polypeptide from the Endoplasmic Reticulum to the Cytosol Is a Rapid Process Facilitated by the Endoplasmic Reticulum-Associated Degradation Pathway

Ken Teter; Rebecca L. Allyn; Michael G. Jobling; Randall K. Holmes

ABSTRACT The active pool of internalized cholera toxin (CT) moves from the endosomes to the Golgi apparatus en route to the endoplasmic reticulum (ER). The catalytic CTA1 polypeptide is then translocated from the ER to the cytosol, possibly through the action of the ER-associated degradation (ERAD) pathway. Translocation was previously measured indirectly through the downstream effects of CT action. We have developed a direct biochemical assay for CTA1 translocation that is independent of toxin activity. Our assay is based upon the farnesylation of a CVIM motif-tagged CTA1 polypeptide (CTA1-CVIM) after it enters the cytosol. When expressed from a eukaryotic vector in transfected CHO cells, CTA1-CVIM was targeted to the ER, but was not secreted. Instead, it was translocated into the cytosol and degraded in a proteosome-dependent manner. Translocation occurred rapidly and was monitored by the appearance of farnesylated CTA1-CVIM in the detergent phase of cell extracts generated with Triton X-114. Detergent-phase partitioning of CTA1-CVIM resulted from the cytoplasmic addition of a 15-carbon fatty acid farnesyl moiety to the cysteine residue of the CVIM motif. Our use of the CTA1-CVIM translocation assay provided supporting evidence for the ERAD model of toxin translocation and generated new information on the timing of CTA1 translocation.


Applied and Environmental Microbiology | 2009

Novel Cell-Based Method To Detect Shiga Toxin 2 from Escherichia coli O157:H7 and Inhibitors of Toxin Activity

Beatriz Quiñones; Shane Massey; Mendel Friedman; Michelle S. Swimley; Ken Teter

ABSTRACT Escherichia coli O157:H7 is a leading cause of food-borne illness. This human pathogen produces Shiga toxins (Stx1 and Stx2) which inhibit protein synthesis by inactivating ribosome function. The present study describes a novel cell-based assay to detect Stx2 and inhibitors of toxin activity. A Vero cell line harboring a destabilized variant (half-life, 2 h) of the enhanced green fluorescent protein (d2EGFP) was used to monitor the toxin-induced inhibition of protein synthesis. This Vero-d2EGFP cell line produced a fluorescent signal which could be detected by microscopy or with a plate reader. However, a greatly attenuated fluorescent signal was detected in Vero-d2EGFP cells that had been incubated overnight with either purified Stx2 or a cell-free culture supernatant from Stx1- and Stx2-producing E. coli O157:H7. Dose-response curves demonstrated that the Stx2-induced inhibition of enhanced green fluorescent protein fluorescence mirrored the Stx2-induced inhibition of overall protein synthesis and identified a picogram-per-milliliter threshold for toxin detection. To establish our Vero-d2EGFP assay as a useful tool for the identification of toxin inhibitors, we screened a panel of plant compounds for antitoxin activities. Fluorescent signals were maintained when Vero-d2EGFP cells were exposed to Stx1- and Stx2-containing medium in the presence of either grape seed or grape pomace extract. The antitoxin properties of the grape extracts were confirmed with an independent toxicity assay that monitored the overall level of protein synthesis in cells treated with purified Stx2. These results indicate that the Vero-d2EGFP fluorescence assay is an accurate and sensitive method to detect Stx2 activity and can be utilized to identify toxin inhibitors.


Journal of Molecular Biology | 2009

Stabilization of the Tertiary Structure of the Cholera Toxin A1 Subunit Inhibits Toxin Dislocation and Cellular Intoxication

Shane Massey; Tuhina Banerjee; Abhay H. Pande; Michael Taylor; Suren A. Tatulian; Ken Teter

Cholera toxin (CT) moves from the cell surface to the endoplasmic reticulum (ER) by retrograde vesicular transport. The catalytic subunit of CT (CTA1) then crosses the ER membrane and enters the cytosol in a process that involves the quality control mechanism of ER-associated degradation. The molecular details of this dislocation event have not been fully characterized. Here, we report that thermal instability in the CTA1 subunit-specifically, the loss of CTA1 tertiary structure at 37 degrees C-triggers toxin dislocation. Biophysical studies found that glycerol preferentially stabilized the tertiary structure of CTA1 without having any noticeable effect on the thermal stability of its secondary structure. The thermal disordering of CTA1 tertiary structure normally preceded the perturbation of its secondary structure, but in the presence of 10% glycerol the temperature-induced loss of CTA1 tertiary structure occurred at higher temperatures in tandem with the loss of CTA1 secondary structure. The glycerol-induced stabilization of CTA1 tertiary structure blocked CTA1 dislocation from the ER and instead promoted CTA1 secretion into the extracellular medium. This, in turn, inhibited CT intoxication. Glycerol treatment also inhibited the in vitro degradation of CTA1 by the core 20S proteasome. Collectively, these findings indicate that toxin thermal instability plays a key role in the intoxication process. They also suggest the stabilization of CTA1 tertiary structure is a potential goal for novel antitoxin therapeutic agents.


Journal of Biological Chemistry | 2011

Protein-disulfide Isomerase Displaces the Cholera Toxin A1 Subunit from the Holotoxin without Unfolding the A1 Subunit

Michael D. Taylor; Tuhina Banerjee; Supriyo Ray; Suren A. Tatulian; Ken Teter

Protein-disulfide isomerase (PDI) has been proposed to exhibit an “unfoldase” activity against the catalytic A1 subunit of cholera toxin (CT). Unfolding of the CTA1 subunit is thought to displace it from the CT holotoxin and to prepare it for translocation to the cytosol. To date, the unfoldase activity of PDI has not been demonstrated for any substrate other than CTA1. An alternative explanation for the putative unfoldase activity of PDI has been suggested by recent structural studies demonstrating that CTA1 will unfold spontaneously upon its separation from the holotoxin at physiological temperature. Thus, PDI may simply dislodge CTA1 from the CT holotoxin without unfolding the CTA1 subunit. To evaluate the role of PDI in CT disassembly and CTA1 unfolding, we utilized a real-time assay to monitor the PDI-mediated separation of CTA1 from the CT holotoxin and directly examined the impact of PDI binding on CTA1 structure by isotope-edited Fourier transform infrared spectroscopy. Our collective data demonstrate that PDI is required for disassembly of the CT holotoxin but does not unfold the CTA1 subunit, thus uncovering a new mechanism for CTA1 dissociation from its holotoxin.


Infection and Immunity | 2006

The Cholera Toxin A13 Subdomain Is Essential for Interaction with ADP-Ribosylation Factor 6 and Full Toxic Activity but Is Not Required for Translocation from the Endoplasmic Reticulum to the Cytosol

Ken Teter; Michael G. Jobling; Danielle Sentz; Randall K. Holmes

ABSTRACT Cholera toxin (CT) moves from the plasma membrane to the endoplasmic reticulum (ER) by retrograde vesicular traffic. In the ER, the catalytic CTA1 polypeptide dissociates from the rest of the toxin and enters the cytosol by a process that involves the quality control mechanism of ER-associated degradation (ERAD). The cytosolic CTA1 then ADP ribosylates Gsα, resulting in adenylate cyclase activation and intoxication of the target cell. It is hypothesized that the C-terminal A13 subdomain of CTA1 plays two crucial roles in the intoxication process: (i) it contains a hydrophobic domain that triggers the ERAD mechanism and (ii) it facilitates interaction with the cytosolic ADP-ribosylation factors (ARFs) that serve as allosteric activators of CTA1. In this study, we examined the role(s) of the CTA13 subdomain in CT intoxication. Full-length CTA1 constructs and truncated CTA1 constructs lacking the A13 subdomain were generated and used to conduct two-hybrid studies of interactions with ARF6, in vitro enzyme assays, in vivo toxicity assays, and in vivo processing/degradation assays. Direct, plasmid-mediated expression of CTA1 constructs in the ER or cytosol of transfected CHO cells was used to perform the in vivo assays. With these methods, we found that the A13 subdomain of CTA1 is important both for interaction with ARF6 and for full expression of enzyme activity in vivo. Surprisingly, however, the A13 subdomain was not required for ERAD-mediated passage of CTA1 from the ER to the cytosol. A possible alternative trigger for CTA1 to activate the ERAD mechanism is discussed.


Biochimica et Biophysica Acta | 2009

A novel mode of translocation for cytolethal distending toxin.

Lina Guerra; Kathleen N. Nemec; Shane Massey; Suren A. Tatulian; Monica Thelestam; Teresa Frisan; Ken Teter

Thermal instability in the toxin catalytic subunit may be a common property of toxins that exit the endoplasmic reticulum (ER) by exploiting the mechanism of ER-associated degradation (ERAD). The Haemophilus ducreyi cytolethal distending toxin (HdCDT) does not utilize ERAD to exit the ER, so we predicted the structural properties of its catalytic subunit (HdCdtB) would differ from other ER-translocating toxins. Here, we document the heat-stable properties of HdCdtB which distinguish it from other ER-translocating toxins. Cell-based assays further suggested that HdCdtB does not unfold before exiting the ER and that it may move directly from the ER lumen to the nucleoplasm. These observations suggest a novel mode of ER exit for HdCdtB.


Infection and Immunity | 2007

Pet, a Non-AB Toxin, Is Transported and Translocated into Epithelial Cells by a Retrograde Trafficking Pathway

Fernando Navarro-Garcia; Adrian Canizalez-Roman; Kaitlin E. Burlingame; Ken Teter; Jorge E. Vidal

ABSTRACT The plasmid-encoded toxin (Pet) of enteroaggregative Escherichia coli is a 104-kDa autotransporter protein that exhibits proteolytic activity against the actin-binding protein α-fodrin. Intracellular cleavage of epithelial fodrin by Pet disrupts the actin cytoskeleton, causing both cytotoxic and enterotoxic effects. Intoxication requires the serine protease activity of Pet and toxin endocytosis from clathrin-coated pits. The additional events in the intracellular trafficking of Pet are largely uncharacterized. Here, we determined by confocal microscopy that internalized Pet is transferred from the early endosomes to the Golgi apparatus and then travels to the endoplasmic reticulum (ER). Pet associates with the Sec61p translocon before it moves into the cytosol as an intact, 104-kDa protein. This translocation process contrasts with the export of other ER-translocating toxins, in which only the catalytic A subunit of the AB toxin enters the cytosol. However, like intoxication with these AB toxins, Pet intoxication was inhibited in a subset of mutant CHO cell lines with aberrant activity in the ER-associated degradation pathway of ER-to-cytosol translocation. This is the first report which documents the cell surface-to-ER and ER-to-cytosol trafficking of a bacterial non-AB toxin.

Collaboration


Dive into the Ken Teter's collaboration.

Top Co-Authors

Avatar

Suren A. Tatulian

University of Central Florida

View shared research outputs
Top Co-Authors

Avatar

Michael Taylor

University of Central Florida

View shared research outputs
Top Co-Authors

Avatar

Tuhina Banerjee

University of Central Florida

View shared research outputs
Top Co-Authors

Avatar

Helen Burress

University of Central Florida

View shared research outputs
Top Co-Authors

Avatar

Randall K. Holmes

University of Colorado Denver

View shared research outputs
Top Co-Authors

Avatar

Shane Massey

University of Central Florida

View shared research outputs
Top Co-Authors

Avatar

Supriyo Ray

University of Central Florida

View shared research outputs
Top Co-Authors

Avatar

Abhay H. Pande

University of Central Florida

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge