Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Ken Welch is active.

Publication


Featured researches published by Ken Welch.


Journal of Physical Chemistry B | 2009

Influence of the type of oxidant on anion exchange properties of fibrous Cladophora cellulose/polypyrrole composites

Aamir Razaq; Albert Mihranyan; Ken Welch; Leif Nyholm; Maria Strømme

The electrochemically controlled anion absorption properties of a novel large surface area composite paper material composed of polypyrrole (PPy) and cellulose derived from Cladophora sp. algae, synthesized with two oxidizing agents, iron(III) chloride and phosphomolybdic acid (PMo), were analyzed in four different electrolytes containing anions (i.e., chloride, aspartate, glutamate, and p-toluenesulfonate) of varying size.The composites were characterized with scanning and transmission electron microscopy, N2 gas adsorption,and conductivity measurements. The potential-controlled ion exchange properties of the materials were studied by cyclic voltammetry and chronoamperometry at varying potentials. The surface area and conductivity of the iron(III) chloride synthesized sample were 58.8 m2/g and 0.65 S/cm, respectively, while the corresponding values for the PMo synthesized sample were 31.3 m2/g and 0.12 S/cm. The number of absorbed ions per sample mass was found to be larger for the iron(III) chloride synthesized sample than for the PMo synthesized one in all four electrolytes. Although the largest extraction yields were obtained in the presence of the smallest anion (i.e., chloride) for both samples, the relative degree of extraction for the largest ions (i.e., glutamate and p-toluenesulfonate) was higher for the PMo sample. This clearly shows that it is possible to increase the extraction yield of large anions by carrying out the PPy polymerization in the presence of large anions. The results likewise show that high ion exchange capacities, as well as extraction and desorption rates, can be obtained for large anions with high surface area composites coated with relatively thin layers of PPy.


Dental Materials | 2010

Dental adhesives with bioactive and on-demand bactericidal properties

Ken Welch; Yanling Cai; Håkan Engqvist; Maria Strømme

OBJECTIVES The aim of the present work was to perform the first in vitro evaluation of a new interfacial bond-promoting material-and-method concept for on-demand long term bacteria inhibition in dental restoration procedures. METHODS The bioactivity, mechanical bonding strength and photocatalytic bactericidal properties, induced by low dose ultraviolet-A (UV-A) irradiation of dental adhesives containing crystalline titania nanoparticles (NPs), were analyzed. RESULTS Dental adhesives with a NP content of 20wt% were shown to be bioactive in terms of spontaneous hydroxylapatite formation upon storage in simulated body fluid and the bioactivity was found to be promoted by chemical etching of the adhesives. The mechanical bonding strength between the adhesives and a HA tooth model was shown to be unaffected by the NPs up to a NP content of 30wt%. Elimination of Staphylococcus epidermidis in contact with the adhesives was found to depend both on UV photocatalytic irradiation intensity and time. Efficient elimination of the bacteria could be achieved using a UV-A dose of 4.5J/cm(2) which is about 6 times below the safe maximum UV dose according to industry guidelines, and 20 times below the average UV-A dose received during an ordinary sun bed session. SIGNIFICANCE The combined features of bioactivity and on-demand bactericidal effect should open up the potential to create dental adhesives that reduce the incidence of secondary caries and promote closure of gaps forming at the interface towards the tooth via remineralization of adjacent tooth substance, as well as prevention of bacterial infections via on-demand UV-A irradiation.


Pharmaceutical Research | 2008

Effect of Surface Energy on Powder Compactibility

Frauke Fichtner; Denny Mahlin; Ken Welch; Simon Gaisford; Göran Alderborn

PurposeThe influence of surface energy on the compactibility of lactose particles has been investigated.Materials and MethodsThree powders were prepared by spray drying lactose solutions without or with low proportions of the surfactant polysorbate 80. Various powder and tablet characterisation procedures were applied. The surface energy of the powders was characterized by Inverse Gas Chromatography and the compressibility of the powders was described by the relationship between tablet porosity and compression pressure. The compactibility of the powders was analyzed by studying the evolution of tablet tensile strength with increasing compaction pressure and porosity.ResultsAll powders were amorphous and similar in particle size, shape, and surface area. The compressibility of the powders and the microstructure of the formed tablets were equal. However, the compactibility and dispersive surface energy was dependent of the composition of the powders.ConclusionThe decrease in tablet strength correlated to the decrease in powder surface energy at constant tablet porosities. This supports the idea that tablet strength is controlled by formation of intermolecular forces over the areas of contact between the particles and that the strength of these bonding forces is controlled by surface energy which, in turn, can be altered by the presence of surfactants.


Journal of Functional Biomaterials | 2012

A Method for Quantitative Determination of Biofilm Viability

Ken Welch; Yanling Cai; Maria Strømme

In this study we present a scheme for quantitative determination of biofilm viability offering significant improvement over existing methods with metabolic assays. Existing metabolic assays for quantifying viable bacteria in biofilms usually utilize calibration curves derived from planktonic bacteria, which can introduce large errors due to significant differences in the metabolic and/or growth rates of biofilm bacteria in the assay media compared to their planktonic counterparts. In the presented method we derive the specific growth rate of Streptococcus mutans bacteria biofilm from a series of metabolic assays using the pH indicator phenol red, and show that this information could be used to more accurately quantify the relative number of viable bacteria in a biofilm. We found that the specific growth rate of S. mutans in biofilm mode of growth was 0.70 h−1, compared to 1.09 h−1 in planktonic growth. This method should be applicable to other bacteria types, as well as other metabolic assays, and, for example, to quantify the effect of antibacterial treatments or the performance of bactericidal implant surfaces.


PLOS ONE | 2013

Photocatalytic antibacterial effects are maintained on resin-based TiO2 nanocomposites after cessation of UV irradiation.

Yanling Cai; Maria Strømme; Ken Welch

Photocatalysis induced by TiO2 and UV light constitutes a decontamination and antibacterial strategy utilized in many applications including self-cleaning environmental surfaces, water and air treatment. The present work reveals that antibacterial effects induced by photocatalysis can be maintained even after the cessation of UV irradiation. We show that resin-based composites containing 20% TiO2 nanoparticles continue to provide a pronounced antibacterial effect against the pathogens Escherichia coli, Staphylococcus epidermidis, Streptococcus pyogenes, Streptococcus mutans and Enterococcus faecalis for up to two hours post UV. For biomaterials or implant coatings, where direct UV illumination is not feasible, a prolonged antibacterial effect after the cessation of the illumination would offer new unexplored treatment possibilities.


Nanotechnology | 2007

Fabrication and characterization of highly reproducible, high resistance nanogaps made by focused ion beam milling

Tobias Blom; Ken Welch; Maria Strømme; Ernesto Coronel; Klaus Leifer

Nanoelectrodes were fabricated combining photolithography, electron beam lithography and focused ion beam milling allowing for large scale integration and nanoengineering of the electrode propertie ...


Journal of Biomedical Materials Research Part B | 2012

Effect of deposition parameters on the photocatalytic activity and bioactivity of TiO2 thin films deposited by vacuum arc on Ti-6Al-4V substrates †

Mirjam Lilja; Ken Welch; Maria Åstrand; Håkan Engqvist; Maria Strømme

This article evaluates the influence of the main parameters in a cathodic arc deposition process on the microstructure of titanium dioxide thin coatings and correlates these to the photocatalytic activity (PCA) and in vitro bioactivity of the coatings. Bioactivity of all as deposited coatings was confirmed by the growth of uniform layers of hydroxyapatite (HA) after 7 days in phosphate buffered saline at 37°C. Comparison of the HA growth after 24 h indicated enhanced HA formation on coatings with small titanium dioxide grains of rutile and anatase phase. The results from the PCA studies showed that coatings containing a mixed microstructure of both anatase and rutile phases, with small grain sizes in the range of 26-30 nm and with a coating thickness of about 250 nm, exhibited enhanced activity as compared with other microstructures and higher coating thickness. The results of this study should be valuable for the development of new bioactive implant coatings with photocatalytically induced on-demand antibacterial properties.


Acta Biomaterialia | 2015

Reactive combinatorial synthesis and characterization of a gradient Ag-Ti oxide thin film with antibacterial properties

Erik Unosson; Daniel Rodríguez; Ken Welch; Håkan Engqvist

The growing demand for orthopedic and dental implants has spurred researchers to develop multifunctional coatings, combining tissue integration with antibacterial features. A possible strategy to endow titanium (Ti) with antibacterial properties is by incorporating silver (Ag), but designing a structure with adequate Ag(+) release while maintaining biocompatibility has been shown difficult. To further explore the composition-structure-property relationships between Ag and Ti, and its effects against bacteria, this study utilized a combinatorial approach to manufacture and test a single sample containing a binary Ag-Ti oxide gradient. The sample, sputter-deposited in a reactive (O2) environment using a custom-built combinatorial physical vapor deposition system, was shown to be effective against Staphylococcus aureus with viability reductions ranging from 17 to above 99%, depending on the amount of Ag(+) released from its different parts. The Ag content along the gradient ranged from 35 to 62 wt.%, but it was found that structural properties such as varied porosity and degree of crystallinity, rather than the amount of incorporated Ag, governed the Ag(+) release and resulting antibacterial activity. The coating also demonstrated in vitro apatite-forming abilities, where structural variety along the sample was shown to alter the hydrophilic behavior, with the degree of hydroxyapatite deposition varying accordingly. By means of combinatorial synthesis, a single gradient sample was able to display intricate compositional and structural features affecting its biological response, which would otherwise require a series of coatings. The current findings suggest that future implant coatings incorporating Ag as an antibacterial agent could be structurally enhanced to better suit clinical requirements.


Journal of Biomedical Materials Research Part B | 2015

Bacteria‐material surface interactions: methodological development for the assessment of implant surface induced antibacterial effects

Magdalena Zaborowska; Ken Welch; Rickard Brånemark; Poroshat Khalilpour; Håkan Engqvist; Peter Thomsen; Margarita Trobos

The choice of material for implanted prostheses is of great importance concerning bacterial colonization and biofilm formation. Consequently, methods to investigate bacterial behavior are needed in order to develop new infection resistant surfaces. In this study, different methodological setups were used to evaluate the antimicrobial effect of photocatalytic titanium oxide and silver surfaces. Biofilm formation and eradication under static and dynamic culture conditions were studied with the use of the following analytical techniques: viable colony-forming unit (CFU) counting, imprinting, fluorescence, and bioluminescence. The present study demonstrates that different methods are needed in order to evaluate the prophylactic and treatment effects on planktonic and biofilm bacteria and to assess the antimicrobial effect of different surface treatments/coatings. Choosing the right antibacterial testing model for the specific application is also of great importance. Both in situ approaches and indirect methods provide valuable complementary information.


Journal of Biomedical Materials Research Part B | 2014

Photocatalytic inactivation of biofilms on bioactive dental adhesives

Yanling Cai; Maria Strømme; Åsa Melhus; Håkan Engqvist; Ken Welch

Biofilms are the most prevalent mode of microbial life in nature and are 10-1000 times more resistant to antibiotics than planktonic bacteria. Persistent biofilm growth associated at the margin of a dental restoration often leads to secondary caries, which remains a challenge in restorative dentistry. In this work, we present the first in vitro evaluation of on-demand photocatalytic inactivation of biofilm on a novel dental adhesive containing TiO2 nanoparticles. Streptococcus mutans biofilm was cultured on this photocatalytic surface for 16 h before photocatalytic treatment with ultraviolet-A (UV-A) light. UV-A doses ranging from 3 to 43 J/cm(2) were applied to the surface and the resulting viability of biofilms was evaluated with a metabolic activity assay incorporating phenol red that provided a quantitative measure of the reduction in viability due to the photocatalytic treatments. We show that an UV-A irradiation dose of 8.4 J/cm(2) leads to one order of magnitude reduction in the number of biofilm bacteria on the surface of the dental adhesives while as much as 5-6 orders of magnitude reduction in the corresponding number can be achieved with a dose of 43 J/cm(2). This material maintains its functional properties as an adhesive in restorative dentistry while offering the possibility of a novel dental procedure in the treatment or prevention of bacterial infections via on-demand UV-A irradiation. Similar materials could be developed for the treatment of additional indications such as peri-implantits.

Collaboration


Dive into the Ken Welch's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge