Ken Yaoi
Kyoto University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Ken Yaoi.
Social Neuroscience | 2009
Ken Yaoi; Naoyuki Osaka; Mariko Osaka
Abstract In recent years, several neuroimaging studies have suggested that the neural basis of the self-referential process1 is special, especially in the medial prefrontal cortex (MPFC). However, it remains controversial whether activity of the MPFC (and other related brain regions) appears only during the self-referential process. We investigated the neural correlates during the processing of references to the self, close other (friend), and distant other (prime minister) using fMRI. In comparison with baseline findings, referential processing to the three kinds of persons defined above showed common activation patterns in the dorsomedial prefrontal cortex (DMPFC), left middle temporal gyrus, left angular gyrus, posterior cingulate cortex and right cerebellum. Additionally, percent changes in BOLD signal in five regions of interest demonstrated the same findings. The result indicated that DMPFC was not special for the self-referential process, while there are common neural bases for evaluating the personalities of the self and others. 1In this article, we define self-“related” processing as a wide variety of information processing to address every stimulus related to the self, and self-“referential” processing as a type of self-related processing that especially needs to access self-representation composed of the self-concept, autobiographical memory and so on.
Scientific Reports | 2015
Hideya Koshino; Takehiro Minamoto; Ken Yaoi; Mariko Osaka; Naoyuki Osaka
The Default Mode Network (DMN) regions exhibit deactivation during a wide variety of resource demanding tasks. However, recent brain imaging studies reported that they also show activation during various cognitive activities. In addition, studies have found a negative correlation between the DMN and the working memory network (WMN). Here, we investigated activity in the DMN and WMN regions during preparation and execution phases of a verbal working memory task. Results showed that the core DMN regions, including the medial prefrontal cortex and posterior cingulate cortex, and WMN regions were activated during preparation. During execution, however, the WMN regions were activated but the DMN regions were deactivated. The results suggest that activation of these network regions is affected by allocation of attentional resources to the task relevant regions due to task demands. This study extends our previous results by showing that the core DMN regions exhibit activation during task preparation and deactivation during task execution.
Scientific Reports | 2013
Mariko Osaka; Ken Yaoi; Takehiro Minamoto; Naoyuki Osaka
The present study investigated when emotion modulates working memory from the perspective of neural activation. Using fMRI, we measured brain activity during the encoding and retrieval phases of a reading span test (RST) that used emotional contexts. The emotional RST required participants to read sentences that elicited negative, neural or positive emotional states while they were memorizing target words from the sentences. Compared with the neutral RST, the negative RST activated the right amygdala during the reading phase. Significant activation was also found in the parahippocampal gyrus, albeit only after activation of the amygdala became comparable to that in the neutral RST. In contrast, the positive RST activated the substantia nigra during the reading phase relative to the neutral RST. These findings suggest that negative and positive emotions modulate working memory through distinctive neural circuits. We also discuss possible relationships between emotional modulation and working memory capacity.
Frontiers in Psychology | 2015
Naoyuki Osaka; Takehiro Minamoto; Ken Yaoi; Miyuki Azuma; Yohko Minamoto Shimada; Mariko Osaka
One form of communication that is common in all cultures is people singing together. Singing together reflects an index of cognitive synchronization and cooperation of human brains. Little is known about the neural synchronization mechanism, however. Here, we examined how two brains make one synchronized behavior using cooperated singing/humming between two people and hyperscanning, a new brain scanning technique. Hyperscanning allowed us to observe dynamic cooperation between interacting participants. We used functional near-infrared spectroscopy (fNIRS) to simultaneously record the brain activity of two people while they cooperatively sang or hummed a song in face-to-face (FtF) or face-to-wall (FtW) conditions. By calculating the inter-brain wavelet transform coherence between two interacting brains, we found a significant increase in the neural synchronization of the left inferior frontal cortex (IFC) for cooperative singing or humming regardless of FtF or FtW compared with singing or humming alone. On the other hand, the right IFC showed an increase in neural synchronization for humming only, possibly due to more dependence on musical processing.
Cortex | 2015
Takehiro Minamoto; Ken Yaoi; Mariko Osaka; Naoyuki Osaka
Neuroimaging and behavioral evidence has suggested that the lateral prefrontal cortex is involved in individual differences in working memory capacity (WMC). However, few studies have localized the neural structures that differentiate high and low WMC individuals, considering the functional architecture of the prefrontal cortex. The present study aimed to identify a frontal region that underlies individual differences from the perspective of the hierarchical architecture of the frontal cortex. By manipulating an episodic factor of cognitive control (control in selecting an appropriate task set according to a temporal context) and using a parametric modulation analysis, we found that both high- and low- WMC individuals have similar activation patterns in the premotor cortex (BA6, 8), caudal prefrontal cortex (BA44, 45), and frontopolar cortex (BA10, 11), but differed in the rostral part of the prefrontal cortex (BA46/47); high WMC individuals showed greater activation in the higher episodic control condition, whereas low WMC individuals showed reduced activation when episodic control was required. Similar patterns of activation were found in the right inferior parietal and middle/inferior temporal cortices. These results indicate that the rostral prefrontal cortex, which supports episodic cognitive control, possibly by sending a weighting signal toward the inferior parietal and middle/inferior temporal cortices that modulate saliency and sensory processing, underlies individual differences in WMC. Episodic control account, which considers the organization of the prefrontal cortex, fits well with previous findings of individual differences in WMC.
Scientific Reports | 2015
Mariko Osaka; Ken Yaoi; Takehiro Minamoto; Naoyuki Osaka
Serial changes of humor comprehension evoked by a well organized four-frame comic Manga were investigated by fMRI in each step of humor comprehension. The neural substrates underlying the amusing effects in response to funny and mixed order manga were compared. In accordance with the time course of the four frames, fMRI activations changed serially. Beginning with the second frame (development scene), activation of the temporo-parietal junction (TPJ) was observed, followed by activations in the temporal and frontal areas during viewing of the third frame (turn scene). For the fourth frame (punch line), strong increased activations were confirmed in the medial prefrontal cortex (MPFC) and cerebellum. Interestingly, distinguishable activation differences in the cerebellum between funny and non-funny conditions were also found for the fourth frame. These findings suggest that humor comprehension evokes activation that initiates in the TPJ and expands to the MPFC and cerebellum at the convergence level.
Frontiers in Human Neuroscience | 2015
Ken Yaoi; Mariko Osaka; Naoyuki Osaka
The self-reference effect (SRE) is defined as better recall or recognition performance when the memorized materials refer to the self. Recently, a number of neuroimaging studies using self-referential and other-referential tasks have reported that self- and other-referential judgments basically show greater activation in common brain regions, specifically in the medial prefrontal cortex (MPFC) when compared with nonmentalizing judgments, but that a ventral-to-dorsal gradient in MPFC emerges from a direct comparison between self- and other-judgments. However, most of these previous studies could not provide an adequate explanation for the neural basis of SRE because they did not directly compare brain activation for recognition/recall of the words referenced to the self with another person. Here, we used an event-related functional magnetic resonance imaging (fMRI) that measured brain activity during processing of references to the self and another, and for recognition of self and other referenced words. Results from the fMRI evaluation task indicated greater activation in ventromedial prefrontal cortex (VMPFC) in the self-referential condition. While in the recognition task, VMPFC, posterior cingulate cortex (PCC) and bilateral angular gyrus (AG) showed greater activation when participants correctly recognized self-referenced words versus other-referenced words. These data provide evidence that the self-referenced words evoked greater activation in the self-related region (VMPFC) and memory-related regions (PCC and AG) relative to another person in the retrieval phase, and that the words remained as a stronger memory trace that supports recognition.
Neuroreport | 2012
Naoyuki Osaka; Takehiro Minamoto; Ken Yaoi; Mariko Osaka
Although the role of the amygdala in processing facial expressions of fear is well established, its role in the processing of other emotions, such as sadness, remains unclear. We hypothesized that the amygdala would respond to a negative emotion such as sadness, when sadness was represented by a theatrical mask. In the traditional Japanese Noh theater, performers use masks to indicate many of the mental states of the characters they portray. Here, we report a functional MRI study, in which participants’ brains were scanned while viewing Noh masks, whose faces appeared delicately sad. Among seventy standard Noh masks previously rated by the individual participants, we chose six top-rated sad masks and six neutral masks to study the neural correlates of such delicate sadness. Results based on a region of interest analysis indicated the activation of the right amygdala while viewing sad masks. We suggest the fact that such delicate sad masks could activate the amygdala, and it could possibly be because of an underlying similarity to emotions such as fear and disgust.
Frontiers in Human Neuroscience | 2014
Takehiro Minamoto; Miyuki Azuma; Ken Yaoi; Aoi Ashizuka; Tastuya Mima; Mariko Osaka; Hidenao Fukuyama; Naoyuki Osaka
The posterior parietal cortex (PPC) has two attentional functions: top-down attentional control and stimulus-driven attentional processing. Using the focused version of the reading span test (RST), in which the target word to be remembered is the critical word for comprehending a sentence (focused word) or a non-focused word, we examined the effect of tDCS on resolution of distractor interference by the focused word in the non-focus condition (top-down attentional control) and on augmented/shrunk attentional capture by the focused word in both the focus and non-focus conditions (stimulus-driven attentional processing). Participants were divided into two groups: anodal tDCS (atDCS) and cathodal tDCS (ctDCS). Online stimulation was given while participants performed the RST. A post-hoc recognition task was also administered in which three kinds of words were presented: target words in the RST, distractor words in the RST, and novel words. atDCS augmented the effect of the focused word by increasing differences in performance between the focus and non-focus conditions. Such an effect was not observed in the ctDCS group. As for the recognition task, atDCS again produced the augmented effect of the focused words in the distractor recognition. On the other hand, ctDCS brought less recognition of non-focused target words in comparison to sham. The results indicate that atDCS promotes stimulus-driven attentional processing, possibly by affecting neural firing in the inferior parietal regions. In contrast, ctDCS appears to prevent retrieval of less important information from episodic memory, which may require top-down attentional processing.
Behavioural Brain Research | 2012
Mariko Osaka; Ken Yaoi; Yuki Otsuka; Maya Katsuhara; Naoyuki Osaka
Effects of practice on a conflict task in elderly individuals are examined with a focus on its impact on executive function in working memory. During a short-term practice period, healthy elderly participants practiced switching attention using a Stroop task that involved a conflict between a task relevant stimulus and an irrelevant stimulus. To explore neural substrates underlying practice effects, two working memory tasks were used: a focus reading span test (F-RST) and a non-focus reading span test (NF-RST); the NF-RST test demanded greater switching attention due to a conflict between the relevant task stimulus and an irrelevant task stimulus, thus requiring an attention switch from the latter to the former. Following the Stroop task practice, fMRI data showed that participants who had engaged in practice had significant increases in activation in the anterior cingulate cortex (ACC), the left inferior parietal lobule (IPL), the left dorsolateral prefrontal cortex (DLPFC) and the precuneus regions during the NF-RST. By contrast, a control group, which did not practice, showed no significant increases in these regions. Results suggest that practice on conflict tasks in elderly individuals activated regions related to conflict perceiving and attention switching regions as well as attention-maintenance regions thereby improving performance on tasks requiring a high degree of attention control of working memory.