Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Kenan Onel is active.

Publication


Featured researches published by Kenan Onel.


Cell | 2004

A single nucleotide polymorphism in the MDM2 promoter attenuates the p53 tumor suppressor pathway and accelerates tumor formation in humans

Gareth L. Bond; Wenwei Hu; Elisabeth E. Bond; Harlan Robins; Stuart G. Lutzker; Nicoleta C. Arva; Jill Bargonetti; Frank Bartel; Helge Taubert; Peter Wuerl; Kenan Onel; Linwah Yip; Shih Jen Hwang; Louise C. Strong; Guillermina Lozano; Arnold J. Levine

The tumor suppressor p53 gene is mutated in minimally half of all cancers. It is therefore reasonable to assume that naturally occurring polymorphic genetic variants in the p53 stress response pathway might determine an individuals susceptibility to cancer. A central node in the p53 pathway is the MDM2 protein, a direct negative regulator of p53. In this report, a single nucleotide polymorphism (SNP309) is found in the MDM2 promoter and is shown to increase the affinity of the transcriptional activator Sp1, resulting in higher levels of MDM2 RNA and protein and the subsequent attenuation of the p53 pathway. In humans, SNP309 is shown to associate with accelerated tumor formation in both hereditary and sporadic cancers. A model is proposed whereby SNP309 serves as a rate-limiting event in carcinogenesis.


Nature Genetics | 2013

A recurrent germline PAX5 mutation confers susceptibility to pre-B cell acute lymphoblastic leukemia

Sohela Shah; Kasmintan A. Schrader; Esmé Waanders; Andrew E. Timms; Joseph Vijai; Cornelius Miething; Jeremy Wechsler; Jun Yang; James Hayes; Robert J. Klein; Jinghui Zhang; Lei Wei; Gang Wu; Michael Rusch; Panduka Nagahawatte; Jing Ma; Shann Ching Chen; Guangchun Song; Jinjun Cheng; Paul A. Meyers; Deepa Bhojwani; Suresh C. Jhanwar; P. Maslak; Martin Fleisher; Jason Littman; Lily Offit; Rohini Rau-Murthy; Megan Harlan Fleischut; Marina Corines; Rajmohan Murali

Somatic alterations of the lymphoid transcription factor gene PAX5 (also known as BSAP) are a hallmark of B cell precursor acute lymphoblastic leukemia (B-ALL), but inherited mutations of PAX5 have not previously been described. Here we report a new heterozygous germline variant, c.547G>A (p.Gly183Ser), affecting the octapeptide domain of PAX5 that was found to segregate with disease in two unrelated kindreds with autosomal dominant B-ALL. Leukemic cells from all affected individuals in both families exhibited 9p deletion, with loss of heterozygosity and retention of the mutant PAX5 allele at 9p13. Two additional sporadic ALL cases with 9p loss harbored somatic PAX5 substitutions affecting Gly183. Functional and gene expression analysis of the PAX5 mutation demonstrated that it had significantly reduced transcriptional activity. These data extend the role of PAX5 alterations in the pathogenesis of pre-B cell ALL and implicate PAX5 in a new syndrome of susceptibility to pre-B cell neoplasia.


Nature Medicine | 2011

Variants at 6q21 implicate PRDM1 in the etiology of therapy-induced second malignancies after Hodgkin's lymphoma.

Timothy Best; Dalin Li; Andrew D. Skol; Tomas Kirchhoff; Sarah Jackson; Yutaka Yasui; Smita Bhatia; Louise C. Strong; Susan M. Domchek; Katherine L. Nathanson; Olufunmilayo I. Olopade; R. Stephanie Huang; Thomas M. Mack; David V. Conti; Kenneth Offit; Wendy Cozen; Leslie L. Robison; Kenan Onel

Survivors of pediatric Hodgkins lymphoma are at risk for radiation therapy–induced second malignant neoplasms (SMNs). We identified two variants at chromosome 6q21 associated with SMNs in survivors of Hodgkins lymphoma treated with radiation therapy as children but not as adults. The variants comprise a risk locus associated with decreased basal expression of PRDM1 (encoding PR domain containing 1, with ZNF domain) and impaired induction of the PRDM1 protein after radiation exposure. These data suggest a new gene-exposure interaction that may implicate PRDM1 in the etiology of radiation therapy-induced SMNs.


Blood | 2013

Evolving risk of therapy-related acute myeloid leukemia following cancer chemotherapy among adults in the United States, 1975-2008.

Lindsay M. Morton; Graça M. Dores; Margaret A. Tucker; Clara J. Kim; Kenan Onel; Ethel S. Gilbert; Joseph F. Fraumeni; Rochelle E. Curtis

Therapy-related acute myeloid leukemia (tAML) is a rare but highly fatal complication of cytotoxic chemotherapy. Despite major changes in cancer treatment, data describing tAML risks over time are sparse. Among 426068 adults initially treated with chemotherapy for first primary malignancy (9 US population-based cancer registries, 1975-2008), we identified 801 tAML cases, 4.70 times more than expected in the general population (P < .001). Over time, tAML risks increased after chemotherapy for non-Hodgkin lymphoma (n = 158; Poisson regression Ptrend < .001), declined for ovarian cancer (n = 72; Ptrend < .001), myeloma (n = 62; Ptrend = .02), and possibly lung cancer (n = 65; Ptrend = .18), and were significantly heterogeneous for breast cancer (n = 223; Phomogeneity = .005) and Hodgkin lymphoma (n = 58; Phomogeneity = .007). tAML risks varied significantly by age at first cancer and latency and were nonsignificantly heightened with radiotherapy for lung, breast, and ovarian cancers. We identified newly emerging elevated tAML risks in patients treated with chemotherapy since 2000 for esophageal, cervical, prostate, and possibly anal cancers; and since the 1990s for bone/joint and endometrial cancers. Using long-term, population-based data, we observed significant variation in tAML risk with time, consistent with changing treatment practices and differential leukemogenicity of specific therapies. tAML risks should be weighed against the benefits of chemotherapy, particularly for new agents and new indications for standard agents.


PLOS ONE | 2010

CBL Is Frequently Altered in Lung Cancers: Its Relationship to Mutations in MET and EGFR Tyrosine Kinases

Yi Hung Carol Tan; Soundararajan Krishnaswamy; Suvobroto Nandi; Rajani Kanteti; Sapana Vora; Kenan Onel; Rifat Hasina; Fang-Yi Lo; Essam El-Hashani; Gustavo M. Cervantes; Matthew Robinson; Stephen C. Kales; Stanley Lipkowitz; Theodore Karrison; Martin Sattler; Everett E. Vokes; Yi Ching Wang; Ravi Salgia

Background Non-small cell lung cancer (NSCLC) is a heterogeneous group of disorders with a number of genetic and proteomic alterations. c-CBL is an E3 ubiquitin ligase and adaptor molecule important in normal homeostasis and cancer. We determined the genetic variations of c-CBL, relationship to receptor tyrosine kinases (EGFR and MET), and functionality in NSCLC. Methods and Findings Using archival formalin-fixed paraffin embedded (FFPE) extracted genomic DNA, we show that c-CBL mutations occur in somatic fashion for lung cancers. c-CBL mutations were not mutually exclusive of MET or EGFR mutations; however they were independent of p53 and KRAS mutations. In normal/tumor pairwise analysis, there was significant loss of heterozygosity (LOH) for the c-CBL locus (22%, n = 8/37) and none of these samples revealed any mutation in the remaining copy of c-CBL. The c-CBL LOH also positively correlated with EGFR and MET mutations observed in the same samples. Using select c-CBL somatic mutations such as S80N/H94Y, Q249E and W802* (obtained from Caucasian, Taiwanese and African-American samples, respectively) transfected in NSCLC cell lines, there was increased cell viability and cell motility. Conclusions Taking the overall mutation rate of c-CBL to be a combination as somatic missense mutation and LOH, it is clear that c-CBL is highly mutated in lung cancers and may play an essential role in lung tumorigenesis and metastasis.


Blood | 2008

MDM2 SNP309 and TP53 Arg72Pro interact to alter therapy-related acute myeloid leukemia susceptibility

Nathan A. Ellis; Dezheng Huo; Ozlem Yildiz; Lisa Worrillow; Mekhala Banerjee; Michelle M. Le Beau; Richard A. Larson; James M. Allan; Kenan Onel

The p53 tumor suppressor directs the cellular response to many mechanistically distinct DNA-damaging agents and is selected against during the pathogenesis of therapy-related acute myeloid leukemia (t-AML). We hypothesized that constitutional genetic variation in the p53 pathway would affect t-AML risk. Therefore, we tested associations between patients with t-AML (n = 171) and 2 common functional p53-pathway variants, the MDM2 SNP309 and the TP53 codon 72 polymorphism. Although neither polymorphism alone influenced the risk of t-AML, an interactive effect was detected such that MDM2 TT TP53 Arg/Arg double homozygotes, and individuals carrying both a MDM2 G allele and a TP53 Pro allele, were at increased risk of t-AML (P value for interaction is .009). This interactive effect was observed in patients previously treated with chemotherapy but not in patients treated with radiotherapy, and in patients with loss of chromosomes 5 and/or 7, acquired abnormalities associated with prior exposure to alkylator chemotherapy. In addition, there was a trend toward shorter latency to t-AML in MDM2 GG versus TT homozygotes in females but not in males, and in younger but not older patients. These data indicate that the MDM2 and TP53 variants interact to modulate responses to genotoxic therapy and are determinants of risk for t-AML.


Blood | 2009

Genome-wide association study to identify novel loci associated with therapy-related myeloid leukemia susceptibility

Jeffrey Knight; Andrew D. Skol; Abhijit Shinde; Darcie Hastings; Richard Walgren; Jin Shao; Thelma R. Tennant; Mekhala Banerjee; James M. Allan; Michelle M. Le Beau; Richard A. Larson; Timothy A. Graubert; Nancy J. Cox; Kenan Onel

Therapy-related acute myeloid leukemia (t-AML) is a rare but fatal complication of cytotoxic therapy. Whereas sporadic cancer results from interactions between complex exposures and low-penetrance alleles, t-AML results from an acute exposure to a limited number of potent genotoxins. Consequently, we hypothesized that the effect sizes of variants associated with t-AML would be greater than in sporadic cancer, and, therefore, that these variants could be detected even in a modest-sized cohort. To test this, we undertook an association study in 80 cases and 150 controls using Affymetrix Mapping 10K arrays. Even at nominal significance thresholds, we found a significant excess of associations over chance; for example, although 6 associations were expected at P less than .001, we found 15 (P(enrich) = .002). To replicate our findings, we genotyped the 10 most significantly associated single nucleotide polymorphisms (SNPs) in an independent t-AML cohort (n = 70) and obtained evidence of association with t-AML for 3 SNPs in the subset of patients with loss of chromosomes 5 or 7 or both, acquired abnormalities associated with prior exposure to alkylator chemotherapy. Thus, we conclude that the effect of genetic factors contributing to cancer risk is potentiated and more readily discernable in t-AML compared with sporadic cancer.


International Journal of Radiation Oncology Biology Physics | 2014

Radiogenomics: Radiobiology enters the era of big data and team science

Barry S. Rosenstein; Catharine M L West; Søren M. Bentzen; Jan Alsner; Christian Nicolaj Andreassen; D. Azria; Gillian C. Barnett; Michael Baumann; N.G. Burnet; Jenny Chang-Claude; Eric Y. Chuang; Charlotte E. Coles; Andre Dekker; Kim De Ruyck; Dirk De Ruysscher; Karen Drumea; Alison M. Dunning; Douglas F. Easton; Rosalind Eeles; Laura Fachal; Sara Gutiérrez-Enríquez; Karin Haustermans; Luis Alberto Henríquez-Hernández; Takashi Imai; George D. D. Jones; Sarah L. Kerns; Zhongxing Liao; Kenan Onel; Harry Ostrer; Matthew Parliament

Reprint requests to: Barry S. Rosenstein,PhD, Department of RadiationOncology, Icahn School of Medicine at Mount Sinai, One Gustave L. LevyPlace, Box 1236, New York, NY 10029. Tel: (212) 824-8960; E-mail:[email protected] by grants from the National Institutes of Health and theDepartment of Defense (1R01CA134444 and PC074201 to B.S.R. andH.O.), the American Cancer Society (RSGT-05-200-01-CCE to B.S.R.),the Instituto de Salud Carlos III (FIS PI10/00164 and PI13/02030 to A.V.),Fondo Europeo de Desarrollo Regional (FEDER 2007e2013) in Spain, aMiguel Servet contract from the Spanish Carlos III Health Institute (CP10/00617 to S.G.-E.), and in the UK by Cancer Research UK.Conflict of interest: E.Y. Chuang holds a patent on biomarkers forpredicting response of esophageal cancer patients to chemoradiationtherapy. The authors report no other conflict of interest.Int J Radiation Oncol Biol Phys, Vol. 89, No. 4, pp. 709e713, 20140360-3016/


Blood | 2012

A genome-wide meta-analysis of nodular sclerosing Hodgkin lymphoma identifies risk loci at 6p21.32.

Wendy Cozen; Dalin Li; Timothy Best; David Van Den Berg; Pierre Antoine Gourraud; Victoria K. Cortessis; Andrew D. Skol; Thomas M. Mack; Sally L. Glaser; Lawrence M. Weiss; Bharat N. Nathwani; Smita Bhatia; Fredrick R. Schumacher; Christopher K. Edlund; Amie E. Hwang; Susan L. Slager; Zachary S. Fredericksen; Louise C. Strong; Thomas M. Habermann; Brian K. Link; James R. Cerhan; Leslie L. Robison; David V. Conti; Kenan Onel

- see front matter 2014 Elsevier Inc. All rights reserved.http://dx.doi.org/10.1016/j.ijrobp.2014.03.009


International Journal of Cancer | 2008

Genetic predictors of long‐term toxicities after radiation therapy for breast cancer

Nataliya Kuptsova; Jenny Chang-Claude; Silke Kropp; Irmgard Helmbold; Peter Schmezer; Dietrich von Fournier; Wulf Haase; Marie Luise Sautter-Bihl; Frederik Wenz; Kenan Onel; Christine B. Ambrosone

Nodular sclerosing Hodgkin lymphoma (NSHL) is a distinct, highly heritable Hodgkin lymphoma subtype. We undertook a genome-wide meta-analysis of 393 European-origin adolescent/young adult NSHL patients and 3315 controls using the Illumina Human610-Quad Beadchip and Affymetrix Genome-Wide Human SNP Array 6.0. We identified 3 single nucleotide polymorphisms (SNPs) on chromosome 6p21.32 that were significantly associated with NSHL risk: rs9268542 (P = 5.35 × 10(-10)), rs204999 (P = 1.44 × 10(-9)), and rs2858870 (P = 1.69 × 10(-8)). We also confirmed a previously reported association in the same region, rs6903608 (P = 3.52 × 10(-10)). rs204999 and rs2858870 were weakly correlated (r(2) = 0.257), and the remaining pairs of SNPs were not correlated (r(2) < 0.1). In an independent set of 113 NSHL cases and 214 controls, 2 SNPs were significantly associated with NSHL and a third showed a comparable odds ratio (OR). These SNPs are found on 2 haplotypes associated with NSHL risk (rs204999-rs9268528-rs9268542-rs6903608-rs2858870; AGGCT, OR = 1.7, P = 1.71 × 10(-6); GAATC, OR = 0.4, P = 1.16 × 10(-4)). All individuals with the GAATC haplotype also carried the HLA class II DRB1*0701 allele. In a separate analysis, the DRB1*0701 allele was associated with a decreased risk of NSHL (OR = 0.5, 95% confidence interval = 0.4, 0.7). These data support the importance of the HLA class II region in NSHL etiology.

Collaboration


Dive into the Kenan Onel's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Theresa Hahn

Roswell Park Cancer Institute

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Li Yan

Roswell Park Cancer Institute

View shared research outputs
Top Co-Authors

Avatar

Marcelo C. Pasquini

Medical College of Wisconsin

View shared research outputs
Top Co-Authors

Avatar

Philip L. McCarthy

Roswell Park Cancer Institute

View shared research outputs
Top Co-Authors

Avatar

Song Liu

Roswell Park Cancer Institute

View shared research outputs
Top Co-Authors

Avatar

Qianqian Zhu

Roswell Park Cancer Institute

View shared research outputs
Top Co-Authors

Avatar

Daniel O. Stram

University of Southern California

View shared research outputs
Researchain Logo
Decentralizing Knowledge