Kendall C. Richards
Southwestern University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Kendall C. Richards.
Transactions of the American Mathematical Society | 1995
G. D. Anderson; Roger W. Barnard; Kendall C. Richards; M. K. Vamanamurthy; Matti Vuorinen
The authors study certain monotoneity and convexity properties of the Gaussian hypergeometric function and those of the Euler gamma function.
Siam Journal on Mathematical Analysis | 2000
Roger W. Barnard; Kent Pearce; Kendall C. Richards
In this paper we verify a conjecture of M. Vuorinen that the Muir approximation is a lower approximation to the arc length of an ellipse. Vuorinen conjectured that
Siam Journal on Mathematical Analysis | 2000
Roger W. Barnard; Kent Pearce; Kendall C. Richards
f(x)={}_{2}F_{1}({\frac{1}{2}},-{\frac{1}{2}};1;x)-[(1+(1-x)^{3/4})/2]^{2/3}
Proceedings of the American Mathematical Society | 1993
Boris Korenblum; Kendall C. Richards
is positive for
Transactions of the American Mathematical Society | 1993
Boris Korenblum; R. O’Neil; Kendall C. Richards; Kehe Zhu
x\in (0,1)
Computational Methods and Function Theory | 2001
Roger W. Barnard; Kendall C. Richards
. The authors prove a much stronger result which says that the Maclaurin coefficients of f are nonnegative. As a key lemma, we show that
AIP Advances | 2015
Eric Oden; Kendall C. Richards
{}_{3}F_{2}(-n,a,b;1+a+b,1+\epsilon -n;1) > 0
Journal of Mathematical Analysis and Applications | 2009
Roger W. Barnard; Michael B. Gordy; Kendall C. Richards
when
Journal of Mathematical Analysis and Applications | 2005
Kendall C. Richards
0 < ab/(1+a+b) < \epsilon < 1
Proceedings of the American Mathematical Society | 2016
Horst Alzer; Kendall C. Richards
for all positive integers n.