Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Kendall J. Blumer is active.

Publication


Featured researches published by Kendall J. Blumer.


Science | 1993

A divergence in the MAP kinase regulatory network defined by MEK kinase and Raf

Carol A. Lange-Carter; Chris Pleiman; Anne M. Gardner; Kendall J. Blumer; Gary L. Johnson

Mitogen-activated protein kinases (MAPKs) are rapidly phosphorylated and activated in response to various extracellular stimuli in many different cell types. Such regulation of MAPK results from sequential activation of a series of protein kinases. The kinases that phosphorylate MAPKs, the MAP kinase kinases (MEKs) are also activated by phosphorylation. MEKs are related in sequence to the yeast protein kinases Byr1 (from Schizosaccharomyces pombe) and Ste7 (from Saccharomyces cerevisiae), which function in the pheromone-induced signaling pathway that results in mating. Byr1 and Ste7 are in turn regulated by the protein kinases Byr2 and Ste11. The amino acid sequence of the mouse homolog of Byr2 and Ste11, denoted MEKK (MEK kinase), was elucidated from a complementary DNA sequence encoding a protein of 672 amino acid residues (73 kilodaltons). MEKK was expressed in all mouse tissues tested, and it phosphorylated and activated MEK. Phosphorylation and activation of MEK by MEKK was independent of Raf, a growth factor-regulated protein kinase that also phosphorylates MEK. Thus, MEKK and Raf converge at MEK in the protein kinase network mediating the activation of MAPKs by hormones, growth factors, and neurotransmitters.


Nature Medicine | 2003

Regulator of G-protein signaling-2 mediates vascular smooth muscle relaxation and blood pressure

Mary Tang; Guang Wang; Ping Lu; Richard H. Karas; Mark Aronovitz; Scott P. Heximer; Kevin M. Kaltenbronn; Kendall J. Blumer; David P. Siderovski; Yan Zhu; Michael E. Mendelsohn

Nitric oxide (NO) inhibits vascular contraction by activating cGMP-dependent protein kinase I-α (PKGI-α), which causes dephosphorylation of myosin light chain (MLC) and vascular smooth muscle relaxation. Here we show that PKGI-α attenuates signaling by the thrombin receptor protease-activated receptor-1 (PAR-1) through direct activation of regulator of G-protein signaling-2 (RGS-2). NO donors and cGMP cause cGMP-mediated inhibition of PAR-1 and membrane localization of RGS-2. PKGI-α binds directly to and phosphorylates RGS-2, which significantly increases GTPase activity of Gq, terminating PAR-1 signaling. Disruption of the RGS-2–PKGI-α interaction reverses inhibition of PAR-1 signaling by nitrovasodilators and cGMP. Rgs2−/− mice develop marked hypertension, and their blood vessels show enhanced contraction and decreased cGMP-mediated relaxation. Thus, PKGI-α binds to, phosphorylates and activates RGS-2, attenuating receptor-mediated vascular contraction. Our study shows that RGS-2 is required for normal vascular function and blood pressure and is a new drug development target for hypertension.


Current Biology | 2000

G-protein-coupled receptors function as oligomers in vivo

Mark C. Overton; Kendall J. Blumer

Hormones, sensory stimuli, neurotransmitters and chemokines signal by activating G-protein-coupled receptors (GPCRs) [1]. Although GPCRs are thought to function as monomers, they can form SDS-resistant dimers, and coexpression of two non-functional or related GPCRs can result in rescue of activity or modification of function [2-10]. Furthermore, dimerization of peptides corresponding to the third cytoplasmic loops of GPCRs increases their potency as activators of G proteins in vitro [11], and peptide inhibitors of dimerization diminish beta(2)-adrenergic receptor signaling [3]. Nevertheless, it is not known whether GPCRs exist as monomers or oligomers in intact cells and membranes, whether agonist binding regulates monomer-oligomer equilibrium, or whether oligomerization governs GPCR function. Here, we report that the alpha-factor receptor, a GPCR that is the product of the STE2 gene in the yeast Saccharomyces cerevisiae, is oligomeric in intact cells and membranes. Coexpression of receptors tagged with the cyan or yellow fluorescent proteins (CFP or YFP) resulted in efficient fluorescence resonance energy transfer (FRET) due to stable association rather than collisional interaction. Monomer-oligomer equilibrium was unaffected by binding of agonist, antagonist, or G protein heterotrimers. Oligomerization was further demonstrated by rescuing endocytosis-defective receptors with coexpressed wild-type receptors. Dominant-interfering receptor mutants inhibited signaling by interacting with wild-type receptors rather than by sequestering G protein heterotrimers. We suggest that oligomerization is likely to govern GPCR signaling and regulation.


Journal of Clinical Investigation | 2003

Hypertension and prolonged vasoconstrictor signaling in RGS2-deficient mice

Scott P. Heximer; Russell H. Knutsen; Xiaoguang Sun; Kevin M. Kaltenbronn; Man Hee Rhee; Ning Peng; Antonio J. Oliveira-dos-Santos; Josef M. Penninger; Anthony J. Muslin; Thomas H. Steinberg; J. Michael Wyss; Robert P. Mecham; Kendall J. Blumer

Signaling by hormones and neurotransmitters that activate G protein-coupled receptors (GPCRs) maintains blood pressure within the normal range despite large changes in cardiac output that can occur within seconds. This implies that blood pressure regulation requires precise kinetic control of GPCR signaling. To test this hypothesis, we analyzed mice deficient in RGS2, a GTPase-activating protein that greatly accelerates the deactivation rate of heterotrimeric G proteins in vitro. Both rgs2+/- and rgs2-/- mice exhibited a strong hypertensive phenotype, renovascular abnormalities, persistent constriction of the resistance vasculature, and prolonged response of the vasculature to vasoconstrictors in vivo. Analysis of P2Y receptor-mediated Ca2+ signaling in vascular smooth muscle cells in vitro indicated that loss of RGS2 increased agonist potency and efficacy and slowed the kinetics of signal termination. These results establish that abnormally prolonged signaling by G protein-coupled vasoconstrictor receptors can contribute to the onset of hypertension, and they suggest that genetic defects affecting the function or expression of RGS2 may be novel risk factors for development of hypertension in humans.


Journal of Clinical Investigation | 2003

Developmental adaptation of the mouse cardiovascular system to elastin haploinsufficiency

Gilles Faury; Mylène Pezet; Russell H. Knutsen; Walter A. Boyle; Scott P. Heximer; Sean E. McLean; Robert K. Minkes; Kendall J. Blumer; Attila Kovacs; Daniel P. Kelly; Dean Y. Li; Barry Starcher; Robert P. Mecham

Supravalvular aortic stenosis is an autosomal-dominant disease of elastin (Eln) insufficiency caused by loss-of-function mutations or gene deletion. Recently, we have modeled this disease in mice (Eln+/-) and found that Eln haploinsufficiency results in unexpected changes in cardiovascular hemodynamics and arterial wall structure. Eln+/- animals were found to be stably hypertensive from birth, with a mean arterial pressure 25-30 mmHg higher than their wild-type counterparts. The animals have only moderate cardiac hypertrophy and live a normal life span with no overt signs of degenerative vascular disease. Examination of arterial mechanical properties showed that the inner diameters of Eln+/- arteries were generally smaller than wild-type arteries at any given intravascular pressure. Because the Eln+/- mouse is hypertensive, however, the effective arterial working diameter is comparable to that of the normotensive wild-type animal. Physiological studies indicate a role for the renin-angiotensin system in maintaining the hypertensive state. The association of hypertension with elastin haploinsufficiency in humans and mice strongly suggests that elastin and other proteins of the elastic fiber should be considered as causal genes for essential hypertension.


Journal of Biological Chemistry | 1999

G Protein Selectivity Is a Determinant of RGS2 Function

Scott P. Heximer; Sreesha P. Srinivasa; Leah S. Bernstein; Jennifer L. Bernard; Maurine E. Linder; John R. Hepler; Kendall J. Blumer

RGS (regulator of Gprotein signaling) proteins are GTPase-activating proteins that attenuate signaling by heterotrimeric G proteins. Whether the biological functions of RGS proteins are governed by quantitative differences in GTPase-activating protein activity toward various classes of Gα subunits and how G protein selectivity is achieved by differences in RGS protein structure are largely unknown. Here we provide evidence indicating that the function of RGS2 is determined in part by differences in potency toward Gq versus Gi family members. RGS2 was 5-fold more potent than RGS4 as an inhibitor of Gq-stimulated phosphoinositide hydrolysis in vivo. In contrast, RGS4 was 8-fold more potent than RGS2 as an inhibitor of Gi-mediated signaling. RGS2 mutants were identified that display increased potency toward Gi family members without affecting potency toward Gq. These mutations and the structure of RGS4-Giα1 complexes suggest that RGS2-Giα interaction is unfavorable in part because of the geometry of the switch I binding pocket of RGS2 and a potential interaction between the α8-α9 loop of RGS2 and αA of Gi class α subunits. The results suggest that the function of RGS2 relative to other RGS family members is governed in part by quantitative differences in activity toward different classes of Gα subunits.


Journal of Cell Biology | 2005

Palmitoylation regulates plasma membrane–nuclear shuttling of R7BP, a novel membrane anchor for the RGS7 family

Ryan M. Drenan; Craig A. Doupnik; Maureen P. Boyle; Louis J. Muglia; James E. Huettner; Maurine E. Linder; Kendall J. Blumer

The RGS7 (R7) family of RGS proteins bound to the divergent Gβ subunit Gβ5 is a crucial regulator of G protein–coupled receptor (GPCR) signaling in the visual and nervous systems. Here, we identify R7BP, a novel neuronally expressed protein that binds R7–Gβ5 complexes and shuttles them between the plasma membrane and nucleus. Regional expression of R7BP, Gβ5, and R7 isoforms in brain is highly coincident. R7BP is palmitoylated near its COOH terminus, which targets the protein to the plasma membrane. Depalmitoylation of R7BP translocates R7BP–R7–Gβ5 complexes from the plasma membrane to the nucleus. Compared with nonpalmitoylated R7BP, palmitoylated R7BP greatly augments the ability of RGS7 to attenuate GPCR-mediated G protein–regulated inward rectifying potassium channel activation. Thus, by controlling plasma membrane nuclear–shuttling of R7BP–R7–Gβ5 complexes, reversible palmitoylation of R7BP provides a novel mechanism that regulates GPCR signaling and potentially transduces signals directly from the plasma membrane to the nucleus.


Journal of Biological Chemistry | 2001

Mechanisms Governing Subcellular Localization and Function of Human RGS2

Scott P. Heximer; Han Lim; Jennifer L. Bernard; Kendall J. Blumer

RGS proteins negatively regulate heterotrimeric G proteins at the plasma membrane. RGS2-GFP localizes to the nucleus, plasma membrane, and cytoplasm of HEK293 cells. Expression of activated Gq increased RGS2 association with the plasma membrane and decreased accumulation in the nucleus, suggesting that signal-induced redistribution may regulate RGS2 function. Thus, we identified and characterized a conserved N-terminal domain in RGS2 that is necessary and sufficient for plasma membrane localization. Mutational and biophysical analyses indicated that this domain is an amphipathic α-helix that binds vesicles containing acidic phospholipids. However, the plasma membrane targeting function of the amphipathic helical domain did not appear to be essential for RGS2 to attenuate signaling by activated Gq. Nevertheless, truncation mutants indicated that the N terminus is essential, potentially serving as a scaffold that binds receptors, signaling proteins, or nuclear components. Indeed, the RGS2 N terminus directs nuclear accumulation of GFP. Although RGS2 possesses a nuclear targeting motif, it lacks a nuclear import signal and enters the nucleus by passive diffusion. Nuclear accumulation of RGS2 does not limit its ability to attenuate Gq signaling, because excluding RGS2 from the nucleus was without effect. RGS2 may nonetheless regulate signaling or other processes in the nucleus.


Journal of Biological Chemistry | 2002

The Extracellular N-terminal Domain and Transmembrane Domains 1 and 2 Mediate Oligomerization of a Yeast G Protein-coupled Receptor

Mark C. Overton; Kendall J. Blumer

G protein-coupled receptors (GPCRs) can form homodimers/oligomers and/or heterodimers/oligomers. The mechanisms used to form specific GPCR oligomers are poorly understood because the domains that mediate such interactions and the step(s) in the secretory pathway where oligomerization occurs have not been well characterized. Here we have used subcellular fractionation and fluorescence resonance energy transfer (FRET) experiments to show that oligomerization of a GPCR (α-factor receptor; STE2 gene product) of the yeast Saccharomyces cerevisiae occurs in the endoplasmic reticulum. To identify domains of this receptor that mediate oligomerization, we used FRET and endocytosis assays of oligomerization in vivo to analyze receptor deletion mutants. A mutant lacking the N-terminal extracellular domain and transmembrane (TM) domain 1 was expressed at the cell surface but did not self-associate. In contrast, a receptor fragment containing only the N-terminal extracellular domain and TM1 could self-associate and heterodimerize with wild type receptors. Analysis of other mutants suggested that oligomerization is facilitated by the N-terminal extracellular domain and TM2. Therefore, the N-terminal extracellular domain, TM1, and TM2 appear to stabilize α-factor receptor oligomers. These domains may form an interface in contact or domain-swapped oligomers. Similar domains may mediate dimerization of certain mammalian GPCRs.


Journal of Biological Chemistry | 1998

MECHANISM OF RGS4, A GTPASE-ACTIVATING PROTEIN FOR G PROTEIN ALPHA SUBUNITS

Sreesha P. Srinivasa; Ned Watson; Mark C. Overton; Kendall J. Blumer

GTP hydrolysis by guanine nucleotide-binding proteins, an essential step in many biological processes, is stimulated by GTPase-activating proteins (GAPs). The mechanisms whereby GAPs stimulate GTP hydrolysis are unknown. We have used mutational, biochemical, and structural data to investigate how RGS4, a GAP for heterotrimeric G protein α subunits, stimulates GTP hydrolysis. Many of the residues of RGS4 that interact with Giα1 are important for GAP activity. Furthermore, optimal GAP activity appears to require the additive effects of interactions along the RGS4-Gα interface. GAP-defective RGS4 mutants invariably were defective in binding Gα subunits in their transition state; furthermore, the apparent strengths of GAP and binding defects were correlated. Thus, none of these residues of RGS4, including asparagine 128, the only residue positioned at the active site of Giα1, is required exclusively for catalyzing GTP hydrolysis. These results and structural data (Tesmer, J. G. G., Berman, D. M., Gilman, A. G., and Sprang, S. R. (1997) Cell 89, 251–261) indicate that RGS4 stimulates GTP hydrolysis primarily by stabilizing the transition state conformation of the switch regions of the G protein, favoring the transition state of the reactants. Therefore, although monomeric and heterotrimeric G proteins are related, their GAPs have evolved distinct mechanisms of action.

Collaboration


Dive into the Kendall J. Blumer's collaboration.

Top Co-Authors

Avatar

Kevin M. Kaltenbronn

Washington University in St. Louis

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Maurine E. Linder

University of Texas Southwestern Medical Center

View shared research outputs
Top Co-Authors

Avatar

Mark C. Overton

Washington University in St. Louis

View shared research outputs
Top Co-Authors

Avatar

Anthony J. Muslin

Washington University in St. Louis

View shared research outputs
Top Co-Authors

Avatar

Ned Watson

Washington University in St. Louis

View shared research outputs
Top Co-Authors

Avatar

Hans H. Dietrich

Washington University in St. Louis

View shared research outputs
Top Co-Authors

Avatar

John A. Cooper

Washington University in St. Louis

View shared research outputs
Top Co-Authors

Avatar

Sharon L. Chinault

Washington University in St. Louis

View shared research outputs
Researchain Logo
Decentralizing Knowledge