Kendra L. Puig
University of North Dakota
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Kendra L. Puig.
PLOS ONE | 2012
Kendra L. Puig; Angela M. Floden; Ramchandra Adhikari; Mikhail Y. Golovko; Colin K. Combs
Background Middle age obesity is recognized as a risk factor for Alzheimers disease (AD) although a mechanistic linkage remains unclear. Based upon the fact that obese adipose tissue and AD brains are both areas of proinflammatory change, a possible common event is chronic inflammation. Since an autosomal dominant form of AD is associated with mutations in the gene coding for the ubiquitously expressed transmembrane protein, amyloid precursor protein (APP) and recent evidence demonstrates increased APP levels in adipose tissue during obesity it is feasible that APP serves some function in both disease conditions. Methodology/Principal Findings To determine whether diet-induced obesity produced proinflammatory changes and altered APP expression in brain versus adipose tissue, 6 week old C57BL6/J mice were maintained on a control or high fat diet for 22 weeks. Protein levels and cell-specific APP expression along with markers of inflammation and immune cell activation were compared between hippocampus, abdominal subcutaneous fat and visceral pericardial fat. APP stimulation-dependent changes in macrophage and adipocyte culture phenotype were examined for comparison to the in vivo changes. Conclusions/Significance Adipose tissue and brain from high fat diet fed animals demonstrated increased TNF-α and microglial and macrophage activation. Both brains and adipose tissue also had elevated APP levels localizing to neurons and macrophage/adipocytes, respectively. APP agonist antibody stimulation of macrophage cultures increased specific cytokine secretion with no obvious effects on adipocyte culture phenotype. These data support the hypothesis that high fat diet-dependent obesity results in concomitant pro-inflammatory changes in brain and adipose tissue that is characterized, in part, by increased levels of APP that may be contributing specifically to inflammatory changes that occur.
Journal of Nutrition | 2013
Lalida Rojanathammanee; Kendra L. Puig; Colin K. Combs
Alzheimer disease (AD) brain is characterized by extracellular plaques of amyloid β (Aβ) peptide with reactive microglia. This study aimed to determine whether a dietary intervention could attenuate microgliosis. Memory was assessed in 12-mo-old male amyloid precursor protein/presenilin 1 (APP/PS1) transgenic mice via Barnes maze testing followed by division into either a control-fed group provided free access to normal chow and water or a treatment group provided free access to normal chow and drinking water supplemented with pomegranate extract (6.25 mL/L) for 3 mo followed by repeat Barnes maze testing for both groups. Three months of pomegranate feeding decreased the path length to escape of mice compared with their initial 12-mo values (P < 0.05) and their control-fed counterparts (P < 0.05). Brains of the 3-mo study pomegranate-fed mice had lower tumor necrosis factor α (TNF-α) concentrations (P < 0.05) and lower nuclear factor of activated T-cell (NFAT) transcriptional activity (P < 0.05) compared with controls. Brains of the 3-mo pomegranate or control mice were also compared with an additional control group of 12-mo-old mice for histologic analysis. Immunocytochemistry showed that pomegranate- but not control-fed mice had attenuated microgliosis (P < 0.05) and Aβ plaque deposition (P < 0.05) compared with 12-mo-old mice. An additional behavioral study again used 12-mo-old male APP/PS1 mice tested by T-maze followed by division into a control group provided with free access to normal chow and sugar supplemented drinking water or a treatment group provided with normal chow and pomegranate extract-supplemented drinking water (6.25 mL/L) for 1 mo followed by repeat T-maze testing in both groups. One month of pomegranate feeding increased spontaneous alternations versus control-fed mice (P < 0.05). Cell culture experiments verified that 2 polyphenol components of pomegranate extract, punicalagin and ellagic acid, attenuated NFAT activity in a reporter cell line (P < 0.05) and decreased Aβ-stimulated TNF-α secretion by murine microglia (P < 0.05). These data indicate that dietary pomegranate produces brain antiinflammatory effects that may attenuate AD progression.
Journal of Neurochemistry | 2012
Mahmoud L. Soliman; Kendra L. Puig; Colin K. Combs; Thad A. Rosenberger
Acetate supplementation increases brain acetyl‐CoA and histone acetylation and reduces lipopolysaccharide (LPS)‐induced neuroglial activation and interleukin (IL)‐1β expression in vivo. To determine how acetate imparts these properties, we tested the hypothesis that acetate metabolism reduces inflammatory signaling in microglia. To test this, we measured the effect acetate treatment had on cytokine expression, mitogen‐activated protein kinase (MAPK) signaling, histone H3 at lysine 9 acetylation, and alterations of nuclear factor‐kappa B (NF‐κB) in primary and BV‐2 cultured microglia. We found that treatment induced H3K9 hyperacetylation and reversed LPS‐induced H3K9 hypoacetylation similar to that found in vivo. LPS also increased IL‐1β, IL‐6, and tumor necrosis factor‐alpha (TNF‐α) mRNA and protein, whereas treatment returned the protein to control levels and only partially attenuated IL‐6 mRNA. In contrast, treatment increased mRNA levels of transforming growth factor‐β1 (TGF‐β1) and both IL‐4 mRNA and protein. LPS increased p38 MAPK and JNK phosphorylation at 4 and 2–4 h, respectively, whereas treatment reduced p38 MAPK and JNK phosphorylation only at 2 h. In addition, treatment reversed the LPS‐induced elevation of NF‐κB p65 protein and phosphorylation at serine 468 and induced acetylation at lysine 310. These data suggest that acetate metabolism reduces inflammatory signaling and alters histone and non‐histone protein acetylation.
PLOS ONE | 2015
Dhaval P. Bhatt; Kendra L. Puig; Matthew W. Gorr; Loren E. Wold; Colin K. Combs
Exposure to air pollutants, including particulate matter, results in activation of the brain inflammatory response and Alzheimer disease (AD)-like pathology in dogs and humans. However, the length of time required for inhalation of ambient particulate matter to influence brain inflammation and AD pathology is less clear. Here, we studied the effect of 3 and 9 months of air particulate matter (<2.5 μm diameter, PM2.5) exposure on brain inflammatory phenotype and pathological hallmarks of AD in C57BL/6 mice. Using western blot, ELISA, and cytokine array analysis we quantified brain APP, beta-site APP cleaving enzyme (BACE), oligomeric protein, total Aβ 1–40 and Aβ 1–42 levels, inducible nitric oxide synthase (iNOS), nitrotyrosine-modified proteins, HNE-Michael adducts, vascular cell adhesion molecule 1 (VCAM-1), glial markers (GFAP, Iba-1), pre- and post- synaptic markers (synaptophysin and PSD-95), cyclooxygenase (COX-1, COX-2) levels, and the cytokine profile in PM2.5 exposed and filtered air control mice. Only 9 month PM2.5 exposure increased BACE protein levels, APP processing, and Aβ 1–40 levels. This correlated with a concomitant increase in COX-1 and COX-2 protein levels and a modest alteration in the cytokine profile. These data support the hypothesis that prolonged exposure to airborne particulate matter has the potential to alter brain inflammatory phenotype and promote development of early AD-like pathology.
Experimental Gerontology | 2013
Kendra L. Puig; Colin K. Combs
Amyloid precursor protein (APP) derived amyloid beta (Aβ) peptides have been extensively investigated in Alzheimers disease pathology of the brain. However, the function of full length APP in the central nervous system remains unclear. Even less is known about the function of this ubiquitously expressed protein and its metabolites outside of the central nervous system. This review summarizes key aspects of the current understanding of the expression and function of APP and its proteolytic fragments in specific non-neuronal tissues.
The Journal of Neuroscience | 2016
Gunjan D. Manocha; Angela M. Floden; Keiko Rausch; Joshua A. Kulas; Brett A. McGregor; Lalida Rojanathammanee; Kelley R. Puig; Kendra L. Puig; Sanjib Karki; Michael R. Nichols; Diane C. Darland; James E. Porter; Colin K. Combs
Prior work suggests that amyloid precursor protein (APP) can function as a proinflammatory receptor on immune cells, such as monocytes and microglia. Therefore, we hypothesized that APP serves this function in microglia during Alzheimers disease. Although fibrillar amyloid β (Aβ)-stimulated cytokine secretion from both wild-type and APP knock-out (mAPP−/−) microglial cultures, oligomeric Aβ was unable to stimulate increased secretion from mAPP−/− cells. This was consistent with an ability of oligomeric Aβ to bind APP. Similarly, intracerebroventricular infusions of oligomeric Aβ produced less microgliosis in mAPP−/− mice compared with wild-type mice. The mAPP−/− mice crossed to an APP/PS1 transgenic mouse line demonstrated reduced microgliosis and cytokine levels and improved memory compared with wild-type mice despite robust fibrillar Aβ plaque deposition. These data define a novel function for microglial APP in regulating their ability to acquire a proinflammatory phenotype during disease. SIGNIFICANCE STATEMENT A hallmark of Alzheimers disease (AD) brains is the accumulation of amyloid β (Aβ) peptide within plaques robustly invested with reactive microglia. This supports the notion that Aβ stimulation of microglial activation is one source of brain inflammatory changes during disease. Aβ is a cleavage product of the ubiquitously expressed amyloid precursor protein (APP) and is able to self-associate into a wide variety of differently sized and structurally distinct multimers. In this study, we demonstrate both in vitro and in vivo that nonfibrillar, oligomeric forms of Aβ are able to interact with the parent APP protein to stimulate microglial activation. This provides a mechanism by which metabolism of APP results in possible autocrine or paracrine Aβ production to drive the microgliosis associated with AD brains.
Journal of Neuroimmune Pharmacology | 2012
Kendra L. Puig; Adam J. Swigost; Xudong Zhou; Mary Ann Sens; Colin K. Combs
Amyloid precursor protein (APP) is widely expressed across many tissue and cell types. Proteolytic processing of the protein gives rise to a plethora of protein fragments with varied biological activities. Although a large amount of data has been generated describing the metabolism of the protein in neurons, its role in regulating the phenotype of other cells remains unclear. Based upon prior work demonstrating that APP regulates the activation phenotype of monocytic lineage cells, we hypothesized that APP can regulate macrophage activation phenotype in tissues other than brain. Ileums of the small intestines from C57BL6/J wild type and APP−/− mice were compared as a representative tissue normally associated with abundant macrophage infiltration. APP−/− intestines demonstrated diminished CD68 immunoreactivity compared to wild type mice. This correlated with significantly less cyclooxygenase-2 (cox-2), CD68, CD40, CD11c, and βIII-tubulin protein levels. Peritoneal macrophages from APP−/− mice demonstrated decreased in vitro migratory ability compared to wild type cells and diminished basal KC cytokine secretion. Whereas, APP−/− intestinal macrophages had an increase in basal KC cytokine secretion compared to wild type cells. Conversely, there was a significant decrease in multiple cytokine levels in APP−/− compared to wild type ileums. Finally, APP−/− mice demonstrated impaired absorption and increased motility compared to wild type mice. These data demonstrate the APP expression regulates immune cell secretions and phenotype and intestinal function. This data set describes a novel function for this protein or its metabolites that may be relevant not only for Alzheimer’s disease but a range of immune-related disorders.
PLOS ONE | 2015
Kendra L. Puig; Gunjan D. Manocha; Colin K. Combs
Background Although APP and its proteolytic metabolites have been well examined in the central nervous system, there remains limited information of their functions outside of the brain. For example, amyloid precursor protein (APP) and amyloid beta (Aβ) immunoreactivity have both been demonstrated in intestinal epithelial cells. Based upon the critical role of these cells in absorption and secretion, we sought to determine whether APP or its metabolite amyloid β (Aβ), had a definable function in these cells. Methodology/Principal Findings The human colonic epithelial cell line, Caco-2 cells, were cultured to examine APP expression and Aβ secretion, uptake, and stimulation. Similar to human colonic epithelium stains, Caco-2 cells expressed APP. They also secreted Aβ 1-40 and Aβ 1-42, with LPS stimulating higher concentrations of Aβ 1-40 secretion. The cells also responded to Aβ 1-40 stimulation by increasing IL-6 cytokine secretion and decreasing cholesterol uptake. Conversely, stimulation with a sAPP-derived peptide increased cholesterol uptake. APP was associated with CD36 but not FATP4 in co-IP pull down experiments from the Caco-2 cells. Moreover, stimulation of APP with an agonist antibody acutely decreased CD36-mediated cholesterol uptake. Conclusions/Significance APP exists as part of a multi-protein complex with CD36 in human colonic epithelial cells where its proteolytic fragments have complex, reciprocal roles in regulating cholesterol uptake. A biologically active peptide fragment from the N-terminal derived, sAPP, potentiated cholesterol uptake while the β secretase generated product, Aβ1-40, attenuated it. These data suggest that APP is important in regulating intestinal cholesterol uptake in a fashion dependent upon specific proteolytic pathways. Moreover, this biology may be applicable to cells beyond the gastrointestinal tract.
Journal of Alzheimer's Disease | 2015
Kendra L. Puig; Brianna M. Lutz; Siri A. Urquhart; Andrew A. Rebel; Xudong Zhou; Gunjan D. Manocha; Mary Ann Sens; Ashok K. Tuteja; Norman L. Foster; Colin K. Combs
Alzheimers disease (AD) is a neurodegenerative disorder histologically characterized by amyloid-β (Aβ) protein accumulation and activation of associated microglia. Although these features are well described in the central nervous system, the process and consequences of Aβ accumulation in the enteric nervous system have not been extensively studied. We hypothesized that Aβ also may accumulate in the enteric nervous system and lead to immune cell activation and neuronal dysfunction in the digestive tract not unlike that observed in diseased brain. To test this hypothesis, ileums of the small intestine of thirteen month old AβPP/PS1 and C57BL/6 (wild type) mice were collected and analyzed using immunohistochemistry, western blot analysis, cytokine arrays, and ELISA. AβPP/PS1 mice demonstrated no differences in intestinal motility or water absorption but elevated luminal IgA levels compared to wild type mice. They also had increased protein levels of AβPP and the proteolytic enzyme, BACE, corresponding to an increase in Aβ1-40 in the intestinal lysate as well as an increase in both Aβ1-40 and Aβ1-42 in the stool. This correlated with increased protein markers of proinflammatory and immune cell activation. Histologic analysis localized AβPP within enteric neurons but also intestinal epithelial cells with elevated Aβ immunoreactivity in the AβPP/PS1 mice. The presence of AβPP, Aβ, and CD68 immunoreactivity in the intestines of some patients with neuropathologically-confirmed AD are consistent with the findings in this mouse model. These data support the hypothesis that in AD the intestine, much like the brain, may develop proinflammatory and immune changes related to AβPP and Aβ.
Scientific Reports | 2017
Kendra L. Puig; Stephen A. Brose; Xudong Zhou; Mary Ann Sens; Gerald F. Combs; Michael D. Jensen; Mikhail Y. Golovko; Colin K. Combs
It is well known that mutations in the gene coding for amyloid precursor protein are responsible for autosomal dominant forms of Alzheimer’s disease. Proteolytic processing of the protein leads to a number of metabolites including the amyloid beta peptide. Although brain amyloid precursor protein expression and amyloid beta production are associated with the pathophysiology of Alzheimer’s disease, it is clear that amyloid precursor protein is expressed in numerous cell types and tissues. Here we demonstrate that amyloid precursor protein is involved in regulating the phenotype of both adipocytes and peripheral macrophages and is required for high fat diet-dependent weight gain in mice. These data suggest that functions of this protein include modulation of the peripheral immune system and lipid metabolism. This biology may have relevance not only to the pathophysiology of Alzheimer’s disease but also diet-associated obesity.