Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Kengo Inoue is active.

Publication


Featured researches published by Kengo Inoue.


Applied and Environmental Microbiology | 2010

Purification and characterization of OmcZ, an outer-surface, octaheme c-type cytochrome essential for optimal current production by Geobacter sulfurreducens.

Kengo Inoue; Xinlei Qian; Leonor Morgado; Byoung-Chan Kim; Tünde Mester; Mounir Izallalen; Carlos A. Salgueiro; Derek R. Lovley

ABSTRACT Previous studies have demonstrated that Geobacter sulfurreducens requires the c-type cytochrome OmcZ, which is present in large (OmcZL; 50-kDa) and small (OmcZS; 30-kDa) forms, for optimal current production in microbial fuel cells. This protein was further characterized to aid in understanding its role in current production. Subcellular-localization studies suggested that OmcZS was the predominant extracellular form of OmcZ. N- and C-terminal amino acid sequence analysis of purified OmcZS and molecular weight measurements indicated that OmcZS is a cleaved product of OmcZL retaining all 8 hemes, including 1 heme with the unusual c-type heme-binding motif CX14CH. The purified OmcZS was remarkably thermally stable (thermal-denaturing temperature, 94.2°C). Redox titration analysis revealed that the midpoint reduction potential of OmcZS is approximately −220 mV (versus the standard hydrogen electrode [SHE]) with nonequivalent heme groups that cover a large reduction potential range (−420 to −60 mV). OmcZS transferred electrons in vitro to a diversity of potential extracellular electron acceptors, such as Fe(III) citrate, U(VI), Cr(VI), Au(III), Mn(IV) oxide, and the humic substance analogue anthraquinone-2,6-disulfonate, but not Fe(III) oxide. The biochemical properties and extracellular localization of OmcZ suggest that it is well suited for promoting electron transfer in current-producing biofilms of G. sulfurreducens.


Environmental Microbiology Reports | 2011

Specific localization of the c‐type cytochrome OmcZ at the anode surface in current‐producing biofilms of Geobacter sulfurreducens

Kengo Inoue; Ching Leang; Ashley E. Franks; Trevor L. Woodard; Kelly P. Nevin; Derek R. Lovley

The outer-surface, c-type cytochrome OmcZ is essential for optimal current production with Geobacter sulfurreducens, a genetically tractable, environmentally relevant model microorganism for the production of electricity with microbial fuel cells in a diversity of environments. In order to further investigate the role of OmcZ in current production, its location was investigated with immunogold labelling. OmcZ was dispersed throughout the extracellular matrix surrounding the cells that accumulated at the bottom of the culture tubes of cells grown under standard conditions with fumarate as the electron acceptor. When G. sulfurreducens grew as a biofilm on a graphite electrode that served as an anode and the sole electron acceptor for growth, OmcZ was highly concentrated at the biofilm-electrode interface. Controls in which the biofilm was grown on the same graphite material, but with fumarate as the electron acceptor, did not have accumulations of OmcZ at the anode, corresponding with the reduced capacity for current production in fumarate-grown biofilms. The specific localization of OmcZ at the anode surface under current-producing conditions, coupled with the previously published finding that deleting the gene for OmcZ dramatically increases the resistance of electron exchange between the anode and the biofilm, suggests that OmcZ may serve as an electrochemical gate facilitating electron transfer from G. sulfurreducens biofilms to the anode surface.


Biochimica et Biophysica Acta | 2011

Biochemical characterization of purified OmcS, a c-type cytochrome required for insoluble Fe(III) reduction in Geobacter sulfurreducens

Xinlei Qian; Tünde Mester; Leonor Morgado; Tsutomu Arakawa; Manju L. Sharma; Kengo Inoue; Crisjoe A. Joseph; Carlos A. Salgueiro; Michael J. Maroney; Derek R. Lovley

Previous studies with Geobacter sulfurreducens have demonstrated that OmcS, an abundant c-type cytochrome that is only loosely bound to the outer surface, plays an important role in electron transfer to Fe(III) oxides as well as other extracellular electron acceptors. In order to further investigate the function of OmcS, it was purified from a strain that overproduces the protein. Purified OmcS had a molecular mass of 47015 Da, and six low-spin bis-histidinyl hexacoordinated heme groups. Its midpoint redox potential was -212 mV. A thermal stability analysis showed that the cooperative melting of purified OmcS occurs in the range of 65-82 °C. Far UV circular dichroism spectroscopy indicated that the secondary structure of purified OmcS consists of about 10% α-helix and abundant disordered structures. Dithionite-reduced OmcS was able to transfer electrons to a variety of substrates of environmental importance including insoluble Fe(III) oxide, Mn(IV) oxide and humic substances. Stopped flow analysis revealed that the reaction rate of OmcS oxidation has a hyperbolic dependence on the concentration of the studied substrates. A ten-fold faster reaction rate with anthraquinone-2,6-disulfonate (AQDS) (25.2 s⁻¹) was observed as compared to that with Fe(III) citrate (2.9 s⁻¹). The results, coupled with previous localization and gene deletion studies, suggest that OmcS is well-suited to play an important role in extracellular electron transfer.


Energy and Environmental Science | 2014

Uptake of self-secreted flavins as bound cofactors for extracellular electron transfer in Geobacter species

Akihiro Okamoto; Koichiro Saito; Kengo Inoue; Kenneth H. Nealson; Kazuhito Hashimoto; Ryuhei Nakamura

Geobacter species are among the most efficient current-producing bacterial species, yet their electron-transfer mechanisms have been scarcely investigated at the molecular level. Here, we provide evidence that Geobacter cells secrete and utilize riboflavin as a bound-cofactor in outer-membrane c-type cytochromes. This finding highlights the potential roles of riboflavin as a major electron carrier in current production.


Journal of Bacteriology | 2007

The Sphingomonas Plasmid pCAR3 Is Involved in Complete Mineralization of Carbazole

Masaki Shintani; Masaaki Urata; Kengo Inoue; Kaori Eto; Hiroshi Habe; Toshio Omori; Hisakazu Yamane; Hideaki Nojiri

We determined the complete 254,797-bp nucleotide sequence of the plasmid pCAR3, a carbazole-degradative plasmid from Sphingomonas sp. strain KA1. A region of about 65 kb involved in replication and conjugative transfer showed similarity to a region of plasmid pNL1 isolated from the aromatic-degrading Novosphingobium aromaticivorans strain F199. The presence of many insertion sequences, transposons, repeat sequences, and their remnants suggest plasticity of this plasmid in genetic structure. Although pCAR3 is thought to carry clustered genes for conjugative transfer, a filter-mating assay between KA1 and a pCAR3-cured strain (KA1W) was unsuccessful, indicating that pCAR3 might be deficient in conjugative transfer. Several degradative genes were found on pCAR3, including two kinds of carbazole-degradative gene clusters (car-I and car-II), and genes for electron transfer components of initial oxygenase for carbazole (fdxI, fdrI, and fdrII). Putative genes were identified for the degradation of anthranilate (and), catechol (cat), 2-hydroxypenta-2,4-dienoate (carDFE), dibenzofuran/fluorene (dbf/fln), protocatechuate (lig), and phthalate (oph). It appears that pCAR3 may carry clustered genes (car-I, car-II, fdxI, fdrI, fdrII, and, and cat) for the degradation of carbazole into tricarboxylic acid cycle intermediates; KA1W completely lost the ability to grow on carbazole, and the carbazole-degradative genes listed above were all expressed when KA1 was grown on carbazole. Reverse transcription-PCR analysis also revealed that the transcription of car-I, car-II, and cat genes was induced by carbazole or its metabolic intermediate. Southern hybridization analyses with probes prepared from car-I, car-II, repA, parA, traI, and traD genes indicated that several Sphingomonas carbazole degraders have DNA regions similar to parts of pCAR3.


Bioscience, Biotechnology, and Biochemistry | 2004

Divergent Structures of Carbazole Degradative car Operons Isolated from Gram-negative Bacteria

Kengo Inoue; Jaka Widada; Seiichiro Nakai; Takayuki Endoh; Masaaki Urata; Yuji Ashikawa; Masaki Shintani; Yuko Saiki; Takako Yoshida; Hiroshi Habe; Toshio Omori; Hideaki Nojiri

Southern hybridization analysis of the genomes from the newly-isolated 10 carbazole (CAR)-utilizing bacteria revealed that 8 of the isolates carried gene clusters homologous to the CAR-catabolic car operon of Pseudomonas resinovorans strain CA10. Sequencing analysis showed that two car operons and the neighboring regions of Pseudomonas sp. strain K23 are nearly identical to that of strain CA10. In contrast to strains CA10 and K23, carEF genes did not exist downstream of the car gene cluster of Janthinobacterium sp. strain J3. In the car gene clusters, strains CA10, K23 and J3 have Rieske-type ferredoxin as a component of carbazole dioxygenase, although Sphingomonas sp. strain KA1 possesses a putidaredoxin-type ferredoxin. We confirmed that this putidaredoxin-type ferredoxin CarAc can function as an electron mediator to CarAa of strain KA1. In the upstream regions of the carJ3 and carKA1 gene clusters, ORFs whose deduced amino acid sequences showed homology to GntR-family transcriptional regulators were identified.


Applied and Environmental Microbiology | 2006

Characterization of Novel Carbazole Catabolism Genes from Gram-Positive Carbazole Degrader Nocardioides aromaticivorans IC177

Kengo Inoue; Hiroshi Habe; Hisakazu Yamane; Hideaki Nojiri

ABSTRACT Nocardioides aromaticivorans IC177 is a gram-positive carbazole degrader. The genes encoding carbazole degradation (car genes) were cloned into a cosmid clone and sequenced partially to reveal 19 open reading frames. The car genes were clustered into the carAaCBaBbAcAd and carDFE gene clusters, encoding the enzymes responsible for the degradation of carbazole to anthranilate and 2-hydroxypenta-2,4-dienoate and of 2-hydroxypenta-2,4-dienoate to pyruvic acid and acetyl coenzyme A, respectively. The conserved amino acid motifs proposed to bind the Rieske-type [2Fe-2S] cluster and mononuclear iron, the Rieske-type [2Fe-2S] cluster, and flavin adenine dinucleotide were found in the deduced amino acid sequences of carAa, carAc, and carAd, respectively, which showed similarities with CarAa from Sphingomonas sp. strain KA1 (49% identity), CarAc from Pseudomonas resinovorans CA10 (31% identity), and AhdA4 from Sphingomonas sp. strain P2 (37% identity), respectively. Escherichia coli cells expressing CarAaAcAd exhibited major carbazole 1,9a-dioxygenase (CARDO) activity. These data showed that the IC177 CARDO is classified into class IIB, while gram-negative CARDOs are classified into class III or IIA, indicating that the respective CARDOs have diverse types of electron transfer components and high similarities of the terminal oxygenase. Reverse transcription-PCR (RT-PCR) experiments showed that the carAaCBaBbAcAd and carDFE gene clusters are operonic. The results of quantitative RT-PCR experiments indicated that transcription of both operons is induced by carbazole or its metabolite, whereas anthranilate is not an inducer. Biotransformation analysis showed that the IC177 CARDO exhibits significant activities for naphthalene, carbazole, and dibenzo-p-dioxin but less activity for dibenzofuran and biphenyl.


Biochimica et Biophysica Acta | 1994

Monoclonal antibody to phosphatidylserine inhibits Na+/K+-ATPase activity

F.M.A.H. Schuurmans Stekhoven; J. Tijmes; Masato Umeda; Kengo Inoue; J.J.H.H.M. De Pont

A monoclonal IgG, directed to phosphatidylserine (PS1G3), partially (40-50%) inhibited Na+/K(+)-ATPase activity (forward running reaction cycle) without affecting the K0.5 values for Na+,K+ and MgATP. The Hill or interaction coefficients (nH) for Na+ and K+ for this reaction were reduced from 3.0 to 1.6 and from 1.6 to 0.8, respectively. The K(+)-stimulated p-nitrophenylphosphatase activity (p-NPPase), which is a partial reaction sequence of the Na+/K(+)-ATPase system (but in the backward running mode), was inhibited more strongly (about 70%) due to an increase in K+/substrate antagonism. In this system K0.5 and nH values for both p-nitrophenyl phosphate (p-NPP) and K+ were increased by the mAb. At the maximally inhibitory concentration of PS1G3 the Vmax of the p-NPPase was also reduced. Partial reactions, which were inhibited by PS1G3, are: (1) the Na(+)-activated phosphorylation (non-competitive vs. Na+), (2) the Rb+ occlusion (competitive vs. Rb+). Partial reactions not harmed by PS1G3 are: (3) the K(+)-dependent dephosphorylation, (4) the K(+)-dependent E1 + K+<-->E2K transition. We conclude that PtdSer is involved in cation occlusion, possibly by forming part of the access gate.


Journal of Bioscience and Bioengineering | 2013

Electricity generation from cattle manure slurry by cassette-electrode microbial fuel cells.

Kengo Inoue; Toshihiro Ito; Yoshihiro Kawano; Atsushi Iguchi; Morio Miyahara; Yoshihiro Suzuki; Kazuya Watanabe

Cassette-electrode microbial fuel cells (CE-MFCs) are efficient and scalable devices for electricity production from organic waste. Previous studies have demonstrated that CE-MFCs are capable of generating electricity from artificial wastewater at relatively high efficiencies. In this study, a single-cassette CE-MFC was constructed, and its capacity for electricity generation from cattle manure suspended in water (solid to water ratio of 1:50) was examined. The CE-MFC reactor was operated in batch mode for 49 days; electricity generation became stable 2 weeks after initiating the operation. The maximum power density was measured at 16.3 W m⁻³ on day 26. Sequencing analysis of PCR-amplified 16S rRNA gene fragments obtained from the original manure and from anode biofilms suggested that Chloroflexi and Geobacteraceae were abundant in the anode biofilm (29% and 18%, respectively), whereas no Geobacteraceae sequences were detected in the original manure sample. The results of this study suggest that CE-MFCs can be used to generate electricity from water-suspended cattle manure in a scalable MFC system.


BMC Structural Biology | 2012

Structural insight into the substrate- and dioxygen-binding manner in the catalytic cycle of rieske nonheme iron oxygenase system, carbazole 1,9a-dioxygenase

Yuji Ashikawa; Zui Fujimoto; Yusuke Usami; Kengo Inoue; Haruko Noguchi; Hisakazu Yamane; Hideaki Nojiri

BackgroundDihydroxylation of tandemly linked aromatic carbons in a cis-configuration, catalyzed by multicomponent oxygenase systems known as Rieske nonheme iron oxygenase systems (ROs), often constitute the initial step of aerobic degradation pathways for various aromatic compounds. Because such RO reactions inherently govern whether downstream degradation processes occur, novel oxygenation mechanisms involving oxygenase components of ROs (RO-Os) is of great interest. Despite substantial progress in structural and physicochemical analyses, no consensus exists on the chemical steps in the catalytic cycles of ROs. Thus, determining whether conformational changes at the active site of RO-O occur by substrate and/or oxygen binding is important. Carbazole 1,9a-dioxygenase (CARDO), a RO member consists of catalytic terminal oxygenase (CARDO-O), ferredoxin (CARDO-F), and ferredoxin reductase. We have succeeded in determining the crystal structures of oxidized CARDO-O, oxidized CARDO-F, and both oxidized and reduced forms of the CARDO-O: CARDO-F binary complex.ResultsIn the present study, we determined the crystal structures of the reduced carbazole (CAR)-bound, dioxygen-bound, and both CAR- and dioxygen-bound CARDO-O: CARDO-F binary complex structures at 1.95, 1.85, and 2.00 Å resolution. These structures revealed the conformational changes that occur in the catalytic cycle. Structural comparison between complex structures in each step of the catalytic mechanism provides several implications, such as the order of substrate and dioxygen bindings, the iron-dioxygen species likely being Fe(III)-(hydro)peroxo, and the creation of room for dioxygen binding and the promotion of dioxygen binding in desirable fashion by preceding substrate binding.ConclusionsThe RO catalytic mechanism is proposed as follows: When the Rieske cluster is reduced, substrate binding induces several conformational changes (e.g., movements of the nonheme iron and the ligand residue) that create room for oxygen binding. Dioxygen bound in a side-on fashion onto nonheme iron is activated by reduction to the peroxo state [Fe(III)-(hydro)peroxo]. This state may react directly with the bound substrate, or O–O bond cleavage may occur to generate Fe(V)-oxo-hydroxo species prior to the reaction. After producing a cis-dihydrodiol, the product is released by reducing the nonheme iron. This proposed scheme describes the catalytic cycle of ROs and provides important information for a better understanding of the mechanism.

Collaboration


Dive into the Kengo Inoue's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Zui Fujimoto

National Agriculture and Food Research Organization

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Derek R. Lovley

University of Massachusetts Amherst

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge