Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Kengo Takeuchi is active.

Publication


Featured researches published by Kengo Takeuchi.


The New England Journal of Medicine | 2010

EML4-ALK Mutations in Lung Cancer That Confer Resistance to ALK Inhibitors

Young Lim Choi; Manabu Soda; Yoshihiro Yamashita; Toshihide Ueno; Junpei Takashima; Takahiro Nakajima; Yasushi Yatabe; Kengo Takeuchi; Toru Hamada; Hidenori Haruta; Yuichi Ishikawa; Hideki Kimura; Tetsuya Mitsudomi; Yoshiro Tanio; Hiroyuki Mano

The EML4 (echinoderm microtubule-associated protein-like 4)-ALK (anaplastic lymphoma kinase) fusion-type tyrosine kinase is an oncoprotein found in 4 to 5% of non-small-cell lung cancers, and clinical trials of specific inhibitors of ALK for the treatment of such tumors are currently under way. Here, we report the discovery of two secondary mutations within the kinase domain of EML4-ALK in tumor cells isolated from a patient during the relapse phase of treatment with an ALK inhibitor. Each mutation developed independently in subclones of the tumor and conferred marked resistance to two different ALK inhibitors. (Funded by the Ministry of Health, Labor, and Welfare of Japan, and others.).


Nature Medicine | 2012

RET, ROS1 and ALK fusions in lung cancer

Kengo Takeuchi; Manabu Soda; Yuki Togashi; Ritsuro Suzuki; Seiji Sakata; Satoko Hatano; Reimi Asaka; Wakako Hamanaka; Hironori Ninomiya; Hirofumi Uehara; Young Lim Choi; Yukitoshi Satoh; Sakae Okumura; Ken Nakagawa; Hiroyuki Mano; Yuichi Ishikawa

Through an integrated molecular- and histopathology-based screening system, we performed a screening for fusions of anaplastic lymphoma kinase (ALK) and c-ros oncogene 1, receptor tyrosine kinase (ROS1) in 1,529 lung cancers and identified 44 ALK-fusion–positive and 13 ROS1-fusion–positive adenocarcinomas, including for unidentified fusion partners for ROS1. In addition, we discovered previously unidentified kinase fusions that may be promising for molecular-targeted therapy, kinesin family member 5B (KIF5B)-ret proto-oncogene (RET) and coiled-coil domain containing 6 (CCDC6)-RET, in 14 adenocarcinomas. A multivariate analysis of 1,116 adenocarcinomas containing these 71 kinase-fusion–positive adenocarcinomas identified four independent factors that are indicators of poor prognosis: age ≥50 years, male sex, high pathological stage and negative kinase-fusion status.


Clinical Cancer Research | 2009

KIF5B-ALK, a Novel Fusion Oncokinase Identified by an Immunohistochemistry-based Diagnostic System for ALK-positive Lung Cancer

Kengo Takeuchi; Young Lim Choi; Yuki Togashi; Manabu Soda; Satoko Hatano; Kentaro Inamura; Shuji Takada; Toshihide Ueno; Yoshihiro Yamashita; Yukitoshi Satoh; Sakae Okumura; Ken Nakagawa; Yuichi Ishikawa; Hiroyuki Mano

Purpose: EML4-ALK is a transforming fusion tyrosine kinase, several isoforms of which have been identified in lung cancer. Immunohistochemical detection of EML4-ALK has proved difficult, however, likely as a result of low transcriptional activity conferred by the promoter-enhancer region of EML4. The sensitivity of EML4-ALK detection by immunohistochemistry should be increased adequately. Experimental Design: We developed an intercalated antibody-enhanced polymer (iAEP) method that incorporates an intercalating antibody between the primary antibody to ALK and the dextran polymer-based detection reagents. Results: Our iAEP method discriminated between tumors positive or negative for EML4-ALK in a test set of specimens. Four tumors were also found to be positive for ALK in an archive of lung adenocarcinoma (n = 130) and another 4 among fresh cases analyzed in a diagnostic laboratory. These 8 tumors were found to include 1 with EML4-ALK variant 1, 1 with variant 2, 3 with variant 3, and 2 with previously unidentified variants (designated variants 6 and 7). Inverse reverse transcription-PCR analysis revealed that the remaining tumor harbored a novel fusion in which intron 24 of KIF5B was ligated to intron 19 of ALK. Multiplex reverse transcription-PCR analysis of additional archival tumor specimens identified another case of lung adenocarcinoma positive for KIF5B-ALK. Conclusions: The iAEP method should prove suitable for immunohistochemical screening of tumors positive for ALK or ALK fusion proteins among pathologic archives. Coupling of PCR-based detection to the iAEP method should further facilitate the rapid identification of novel ALK fusion genes such as KIF5B-ALK.


Nature | 2009

Frequent inactivation of A20 in B-cell lymphomas

Motohiro Kato; Masashi Sanada; Itaru Kato; Yasuharu Sato; Junko Takita; Kengo Takeuchi; Akira Niwa; Yuyan Chen; Kumi Nakazaki; Junko Nomoto; Yoshitaka Asakura; Satsuki Muto; Azusa Tamura; Mitsuru Iio; Yoshiki Akatsuka; Yasuhide Hayashi; Hiraku Mori; Takashi Igarashi; Mineo Kurokawa; Shigeru Chiba; Shigeo Mori; Yuichi Ishikawa; Koji Okamoto; Kensei Tobinai; Hitoshi Nakagama; Tatsutoshi Nakahata; Tadashi Yoshino; Yukio Kobayashi; Seishi Ogawa

A20 is a negative regulator of the NF-κB pathway and was initially identified as being rapidly induced after tumour-necrosis factor-α stimulation. It has a pivotal role in regulation of the immune response and prevents excessive activation of NF-κB in response to a variety of external stimuli; recent genetic studies have disclosed putative associations of polymorphic A20 (also called TNFAIP3) alleles with autoimmune disease risk. However, the involvement of A20 in the development of human cancers is unknown. Here we show, using a genome-wide analysis of genetic lesions in 238 B-cell lymphomas, that A20 is a common genetic target in B-lineage lymphomas. A20 is frequently inactivated by somatic mutations and/or deletions in mucosa-associated tissue lymphoma (18 out of 87; 21.8%) and Hodgkin’s lymphoma of nodular sclerosis histology (5 out of 15; 33.3%), and, to a lesser extent, in other B-lineage lymphomas. When re-expressed in a lymphoma-derived cell line with no functional A20 alleles, wild-type A20, but not mutant A20, resulted in suppression of cell growth and induction of apoptosis, accompanied by downregulation of NF-κB activation. The A20-deficient cells stably generated tumours in immunodeficient mice, whereas the tumorigenicity was effectively suppressed by re-expression of A20. In A20-deficient cells, suppression of both cell growth and NF-κB activity due to re-expression of A20 depended, at least partly, on cell-surface-receptor signalling, including the tumour-necrosis factor receptor. Considering the physiological function of A20 in the negative modulation of NF-κB activation induced by multiple upstream stimuli, our findings indicate that uncontrolled signalling of NF-κB caused by loss of A20 function is involved in the pathogenesis of subsets of B-lineage lymphomas.


Proceedings of the National Academy of Sciences of the United States of America | 2008

A mouse model for EML4-ALK-positive lung cancer

Manabu Soda; Shuji Takada; Kengo Takeuchi; Young Lim Choi; Munehiro Enomoto; Toshihide Ueno; Hidenori Haruta; Toru Hamada; Yoshihiro Yamashita; Yuichi Ishikawa; Yukihiko Sugiyama; Hiroyuki Mano

EML4-ALK is a fusion-type protein tyrosine kinase that is generated in human non-small-cell lung cancer (NSCLC) as a result of a recurrent chromosome inversion, inv (2)(p21p23). Although mouse 3T3 fibroblasts expressing human EML4-ALK form transformed foci in culture and s.c. tumors in nude mice, it has remained unclear whether this fusion protein plays an essential role in the carcinogenesis of NSCLC. To address this issue, we have now established transgenic mouse lines that express EML4-ALK specifically in lung alveolar epithelial cells. All of the transgenic mice examined developed hundreds of adenocarcinoma nodules in both lungs within a few weeks after birth, confirming the potent oncogenic activity of the fusion kinase. Although such tumors underwent progressive enlargement in control animals, oral administration of a small-molecule inhibitor of the kinase activity of ALK resulted in their rapid disappearance. Similarly, whereas i.v. injection of 3T3 cells expressing EML4-ALK induced lethal respiratory failure in recipient nude mice, administration of the ALK inhibitor effectively cleared the tumor burden and improved the survival of such animals. These data together reinforce the pivotal role of EML4-ALK in the pathogenesis of NSCLC in humans, and they provide experimental support for the treatment of this intractable cancer with ALK inhibitors.


Lancet Oncology | 2013

CH5424802 (RO5424802) for patients with ALK-rearranged advanced non-small-cell lung cancer (AF-001JP study): a single-arm, open-label, phase 1–2 study

Takashi Seto; Katsuyuki Kiura; Makoto Nishio; Kazuhiko Nakagawa; Makoto Maemondo; Akira Inoue; Toyoaki Hida; Nobuyuki Yamamoto; Hiroshige Yoshioka; Masao Harada; Yuichiro Ohe; Naoyuki Nogami; Kengo Takeuchi; Tadashi Shimada; Tomohiro Tanaka; Tomohide Tamura

BACKGROUND Currently, crizotinib is the only drug that has been approved for treatment of ALK-rearranged non-small-cell lung cancer (NSCLC). We aimed to study the activity and safety of CH5424802, a potent, selective, and orally available ALK inhibitor. METHODS In this multicentre, single-arm, open-label, phase 1-2 study of CH5424802, we recruited ALK inhibitor-naive patients with ALK-rearranged advanced NSCLC from 13 hospitals in Japan. In the phase 1 portion of the study, patients received CH5424802 orally twice daily by dose escalation. The primary endpoints of the phase 1 were dose limiting toxicity (DLT), maximum tolerated dose (MTD), and pharmacokinetic parameters. In the phase 2 portion of the study, patients received CH5424802 at the recommended dose identified in the phase 1 portion of the study orally twice a day. The primary endpoint of the phase 2 was the proportion of patients who had an objective response. Treatment was continued in 21-day cycles until disease progression, intolerable adverse events, or withdrawal of consent. The analysis was done by intent to treat. This study is registered with the Japan Pharmaceutical Information Center, number JapicCTI-101264. FINDINGS Patients were enrolled between Sept 10, 2010, and April 18, 2012. The data cutoff date was July 31, 2012. In the phase 1 portion, 24 patients were treated at doses of 20-300 mg twice daily. No DLTs or adverse events of grade 4 were noted up to the highest dose; thus 300 mg twice daily was the recommended phase 2 dose. In the phase 2 portion of the study, 46 patients were treated with the recommended dose, of whom 43 achieved an objective response (93.5%, 95% CI 82.1-98.6) including two complete responses (4.3%, 0.5-14.8) and 41 partial responses (89.1%, 76.4-96.4). Treatment-related adverse events of grade 3 were recorded in 12 (26%) of 46 patients, including two patients each experiencing decreased neutrophil count and increased blood creatine phosphokinase. Serious adverse events occurred in five patients (11%). No grade 4 adverse events or deaths were reported. The study is still ongoing, since 40 of the 46 patients in the phase 2 portion remain on treatment. INTERPRETATION CH5424802 is well tolerated and highly active in patients with advanced ALK-rearranged NSCLC. FUNDING Chugai Pharmaceutical Co, Ltd.


Journal of Thoracic Oncology | 2008

EML4-ALK fusion is linked to histological characteristics in a subset of lung cancers.

Kentaro Inamura; Kengo Takeuchi; Yuki Togashi; Kimie Nomura; Hironori Ninomiya; Michiyo Okui; Yukitoshi Satoh; Sakae Okumura; Ken Nakagawa; Manabu Soda; Young Lim Choi; Toshiro Niki; Hiroyuki Mano; Yuichi Ishikawa

Introduction: Very recently, we have found a novel fusion product between the echinoderm microtubule-associated protein-like4 (EML4) and the anaplastic lymphoma kinase (ALK) in non-small cell lung cancers (NSCLCs). Tumors featuring EML4-ALK fusion constitute one subtype of NSCLC that might be highly sensitive to ALK inhibitors. Herein, we present results of a first large scale study of EML4-ALK fusion in lung cancers. Methods: Using reverse transcription-polymerase chain reaction for EML4-ALK fusion mRNA, we investigated 149 lung adenocarcinomas, 48 squamous cell carcinomas, 3 large-cell neuroendocrine carcinomas, and 21 small-cell carcinomas. For EML4-ALK-positive cancers, we further investigated the presence of ALK fusion proteins by immunohistochemistry. Results: Five of 149 adenocarcinomas (3.4%) showed EML4-ALK fusion mRNA, this being totally lacking in carcinomas of other types (0/72). In all the fusion-positive cases, ALK fusion protein could be detected in the cytoplasm immunohistochemically. The five fusion cases featured two EML4-ALK variant 1 fusions and three variant 2 fusions. Histologically, both variant 1 cases were mixed type adenocarcinomas, showing papillary with bronchioloalveolar components. Interestingly, all three variant 2 cases were acinar adenocarcinomas, the link being statistically significant (p = 0.00018). None of the five fusion-positive cases demonstrated any mutations of EGFR or KRAS, pointing to a mutually exclusive relationship (p = 0.014). There was no association with smoking habits. Conclusions: In the present first investigation of EML4-ALK fusion in a large study of lung cancers (5/221), we found an interesting histotype-genotype relationship. Furthermore, we could detect the fusion protein by immunohistochemistry, pointing to possible clinical applications.


Clinical Cancer Research | 2008

Multiplex Reverse Transcription-PCR Screening for EML4-ALK Fusion Transcripts

Kengo Takeuchi; Young Lim Choi; Manabu Soda; Kentaro Inamura; Yuki Togashi; Satoko Hatano; Munehiro Enomoto; Shuji Takada; Yoshihiro Yamashita; Yukitoshi Satoh; Sakae Okumura; Ken Nakagawa; Yuichi Ishikawa; Hiroyuki Mano

Purpose: EML4-ALK is a fusion-type protein tyrosine kinase that is generated by inv(2)(p21p23) in the genome of non–small cell lung cancer (NSCLC). To allow sensitive detection of EML4-ALK fusion transcripts, we have now developed a multiplex reverse transcription-PCR (RT-PCR) system that captures all in-frame fusions between the two genes. Experimental Design: Primers were designed to detect all possible in-frame fusions of EML4 to exon 20 of ALK, and a single-tube multiplex RT-PCR assay was done with total RNA from 656 solid tumors of the lung (n = 364) and 10 other organs. Results: From consecutive lung adenocarcinoma cases (n = 253), we identified 11 specimens (4.35%) positive for fusion transcripts, 9 of which were positive for the previously identified variants 1, 2, and 3. The remaining two specimens harbored novel transcript isoforms in which exon 14 (variant 4) or exon 2 (variant 5) of EML4 was connected to exon 20 of ALK. No fusion transcripts were detected for other types of lung cancer (n = 111) or for tumors from 10 other organs (n = 292). Genomic rearrangements responsible for the fusion events in NSCLC cells were confirmed by genomic PCR analysis and fluorescence in situ hybridization. The novel isoforms of EML4-ALK manifested marked oncogenic activity, and they yielded a pattern of cytoplasmic staining with fine granular foci in immunohistochemical analysis of NSCLC specimens. Conclusions: These data reinforce the importance of accurate diagnosis of EML4-ALK–positive tumors for the optimization of treatment strategies.


Cancer Research | 2008

Identification of Novel Isoforms of the EML4-ALK Transforming Gene in Non–Small Cell Lung Cancer

Young Lim Choi; Kengo Takeuchi; Manabu Soda; Kentaro Inamura; Yuki Togashi; Satoko Hatano; Munehiro Enomoto; Toru Hamada; Hidenori Haruta; Hideki Watanabe; Kentaro Kurashina; Hisashi Hatanaka; Toshihide Ueno; Shuji Takada; Yoshihiro Yamashita; Yukihiko Sugiyama; Yuichi Ishikawa; Hiroyuki Mano

The genome of a subset of non-small-cell lung cancers (NSCLC) harbors a small inversion within chromosome 2 that gives rise to a transforming fusion gene, EML4-ALK, which encodes an activated protein tyrosine kinase. Although breakpoints within EML4 have been identified in introns 13 and 20, giving rise to variants 1 and 2, respectively, of EML4-ALK, it has remained unclear whether other isoforms of the fusion gene are present in NSCLC cells. We have now screened NSCLC specimens for other in-frame fusion cDNAs that contain both EML4 and ALK sequences. Two slightly different fusion cDNAs in which exon 6 of EML4 was joined to exon 20 of ALK were each identified in two individuals of the cohort. Whereas one cDNA contained only exons 1 to 6 of EML4 (variant 3a), the other also contained an additional 33-bp sequence derived from intron 6 of EML4 (variant 3b). The protein encoded by the latter cDNA thus contained an insertion of 11 amino acids between the EML4 and ALK sequences of that encoded by the former. Both variants 3a and 3b of EML4-ALK exhibited marked transforming activity in vitro as well as oncogenic activity in vivo. A lung cancer cell line expressing endogenous variant 3 of EML4-ALK underwent cell death on exposure to a specific inhibitor of ALK catalytic activity. These data increase the frequency of EML4-ALK-positive NSCLC tumors and bolster the clinical relevance of this oncogenic kinase.


Modern Pathology | 2009

EML4-ALK lung cancers are characterized by rare other mutations, a TTF-1 cell lineage, an acinar histology, and young onset

Kentaro Inamura; Kengo Takeuchi; Yuki Togashi; Satoko Hatano; Hironori Ninomiya; Noriko Motoi; Mingyon Mun; Yukinori Sakao; Sakae Okumura; Ken Nakagawa; Manabu Soda; Young Lim Choi; Hiroyuki Mano; Yuichi Ishikawa

A subset of lung cancers harbors a small inversion within chromosome 2p, giving rise to a transforming fusion gene, EML4-ALK (echinoderm microtubule-associated protein-like 4 gene and the anaplastic lymphoma kinase gene), which encodes an activated tyrosine kinase. We have earlier examined the presence of EML4-ALK by multiplex reverse transcription-polymerase chain reaction in 363 specimens of lung cancer, identifying 11 adenocarcinoma cases featuring the fusion gene. In this study, we clinicopathologically examined the characteristics of the EML4-ALK-positive cases, including the mutation status of EGFR, KRAS, and TP53, and whether they were of thyroid transcription factor-1 (TTF-1) cell lineage or not. Of 11 patients, 4 (36%) with EML4-ALK-positive lung adenocarcinomas who were below 50 years of age were affected by these diseases, as compared with 12 of 242 patients (5.0%) with EML4-ALK-negative lung adenocarcinomas (P=0.00038). EML4-ALK-positive lung adenocarcinomas were characterized by less-differentiated grade (P=0.0082) and acinar-predominant structure (P<0.0001) in histology. Furthermore, the presence of EML4-ALK appears to be mutually exclusive for EGFR and KRAS mutations (P=0.00018), whereas coexisting with TP53 mutations at a low frequency (1/11=9.1%), and correlating with non- or light smoking (P=0.040), in line with the TTF-1 immunoreactivity. Thus, EML4-ALK-positive tumors may form a distinct entity among lung adenocarcinomas, characterized by young onset, acinar histology, no or rare mutations in EGFR, KRAS, and TP53, and a TTF-1 cell lineage, all in agreement with the prevalence in non- or light smokers.

Collaboration


Dive into the Kengo Takeuchi's collaboration.

Top Co-Authors

Avatar

Kiyohiko Hatake

Japanese Foundation for Cancer Research

View shared research outputs
Top Co-Authors

Avatar

Yasuhito Terui

Japanese Foundation for Cancer Research

View shared research outputs
Top Co-Authors

Avatar

Masahiro Yokoyama

Japanese Foundation for Cancer Research

View shared research outputs
Top Co-Authors

Avatar

Naoko Tsuyama

Japanese Foundation for Cancer Research

View shared research outputs
Top Co-Authors

Avatar

Yuichi Ishikawa

Japanese Foundation for Cancer Research

View shared research outputs
Top Co-Authors

Avatar

Yuko Mishima

Japanese Foundation for Cancer Research

View shared research outputs
Top Co-Authors

Avatar

Kyoko Ueda

Japanese Foundation for Cancer Research

View shared research outputs
Top Co-Authors

Avatar

Noriko Nishimura

Japanese Foundation for Cancer Research

View shared research outputs
Top Co-Authors

Avatar

Seiji Sakata

Japanese Foundation for Cancer Research

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge