Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Kenichi Hongo is active.

Publication


Featured researches published by Kenichi Hongo.


Molecular and Cellular Biology | 2004

p38α Mitogen-Activated Protein Kinase Plays a Critical Role in Cardiomyocyte Survival but Not in Cardiac Hypertrophic Growth in Response to Pressure Overload

Kazuhiko Nishida; Osaniu Yamaguchi; Shinichi Hirotani; Shungo Hikoso; Yoshiharu Higuchi; Tetsuya Watanabe; Toshihiro Takeda; Soh Osuka; Takashi Morita; Gen Kondoh; Yoshihiro Uno; Kazunori Kashiwase; Masayuki Taniike; Atsuko Nakai; Yasushi Matsumura; Jun-ichi Miyazaki; Tatsuhiko Sudo; Kenichi Hongo; Yoichiro Kusakari; Satoshi Kurihara; Kenneth R. Chien; Junji Takeda; Masatsugu Hori; Kinya Otsu

ABSTRACT The molecular mechanism for the transition from cardiac hypertrophy, an adaptive response to biomechanical stress, to heart failure is poorly understood. The mitogen-activated protein kinase p38α is a key component of stress response pathways in various types of cells. In this study, we attempted to explore the in vivo physiological functions of p38α in hearts. First, we generated mice with floxed p38α alleles and crossbred them with mice expressing the Cre recombinase under the control of the α-myosin heavy-chain promoter to obtain cardiac-specific p38α knockout mice. These cardiac-specific p38α knockout mice were born normally, developed to adulthood, were fertile, exhibited a normal life span, and displayed normal global cardiac structure and function. In response to pressure overload to the left ventricle, they developed significant levels of cardiac hypertrophy, as seen in controls, but also developed cardiac dysfunction and heart dilatation. This abnormal response to pressure overload was accompanied by massive cardiac fibrosis and the appearance of apoptotic cardiomyocytes. These results demonstrate that p38α plays a critical role in the cardiomyocyte survival pathway in response to pressure overload, while cardiac hypertrophic growth is unaffected despite its dramatic down-regulation.


Proceedings of the National Academy of Sciences of the United States of America | 2003

Targeted deletion of apoptosis signal-regulating kinase 1 attenuates left ventricular remodeling

Osamu Yamaguchi; Yoshiharu Higuchi; Shinichi Hirotani; Kazunori Kashiwase; Hiroyuki Nakayama; Shungo Hikoso; Toshihiro Takeda; Tetsuya Watanabe; Michio Asahi; Masayuki Taniike; Yasushi Matsumura; Ikuko Tsujimoto; Kenichi Hongo; Yoichiro Kusakari; Satoshi Kurihara; Kazuhiko Nishida; Hidenori Ichijo; Masatsugu Hori; Kinya Otsu

Left ventricular remodeling that occurs after myocardial infarction (MI) and pressure overload is generally accepted as a determinant of the clinical course of heart failure. The molecular mechanism of this process, however, remains to be elucidated. Apoptosis signal-regulating kinase 1 (ASK1) is a mitogen-activated protein kinase kinase kinase that plays an important role in stress-induced apoptosis. We used ASK1 knockout mice (ASK-/-) to test the hypothesis that ASK1 is involved in development of left ventricular remodeling. ASK-/- hearts showed no morphological or histological defects. Echocardiography and cardiac catheterization revealed normal global structure and function. Left ventricular structural and functional remodeling were determined 4 weeks after coronary artery ligation or thoracic transverse aortic constriction (TAC). ASK-/- had significantly smaller increases in left ventricular end-diastolic and end-systolic ventricular dimensions and smaller decreases in fractional shortening in both experimental models compared with WT mice. The number of terminal deoxynucleotidyl transferase biotin-dUDP nick end-labeling-positive myocytes after MI or TAC was decreased in ASK-/- compared with that in WT mice. Overexpression of a constitutively active mutant of ASK1 induced apoptosis in isolated rat neonatal cardiomyocytes, whereas neonatal ASK-/- cardiomyocytes were resistant to H2O2-induced apoptosis. An in vitro kinase assay showed increased ASK1 activity in heart after MI or TAC in WT mice. Thus, ASK1 plays an important role in regulating left ventricular remodeling by promoting apoptosis.


The Journal of Physiology | 1990

Modulation of Ca2+ transients and contractile properties by beta-adrenoceptor stimulation in ferret ventricular muscles.

O. Okazaki; Norio Suda; Kenichi Hongo; Masato Konishi; Satoshi Kurihara

1. The mechanism of modulation of Ca2+ transients and contraction by beta‐adrenoceptor stimulation was studied in ferret ventricular muscles using aequorin to measure intracellular Ca2+. 2. Peaks of tension and light transients were increased by isoprenaline (10(‐9) ‐ 5 x 10(‐7) M) which also abbreviated their time courses. 3. Time‐to‐peak tension was significantly shortened by 5 x 10(‐9) M‐isoprenaline and time‐to‐peak light was abbreviated by 10(‐9) M‐isoprenaline. 4. The time for the light to decay was shortened at 10(‐9) M‐isoprenaline. However, a higher concentration of isoprenaline (10(‐8) M) was required for significant shortening of the half‐relaxation time (TR50). 5. When isoprenaline was removed and beta‐blocker (bupranolol, 1 microM) was applied, the time course of the light transients recovered but the time course of relaxation did not recover. 6. The relationship between [Ca2+]i and tension in tetanic contraction produced in the presence of ryanodine (5 microM) was shifted to the right by isoprenaline (10(‐8) M). This was recovered by the replacement of isoprenaline with bupranolol (1 microM). 7. Isoprenaline (10(‐7) M) added to the solution containing 20 mM [Ca2+]O and Bay K 8644 (1 microM), which produced maximal tension, caused a large light signal and enhancement of the initial phasic tension in tetanic contraction. However, the replacement of isoprenaline with bupranolol after immersing the preparation in 20 mM [Ca2+]O solution with Bay K 8644 and isoprenaline, did not significantly change the tension level, although the light signal decreased. Similar results were obtained in the ventricular muscle of young rats. 8. These results suggest that the dose dependence of modulation of the contractile element and sarcoplasmic reticulum (SR) by beta‐adrenoceptor stimulation differs, and that additional factors, other than the faster Ca2+ uptake by SR and the decrease in Ca2+ sensitivity of the contractile element, might be involved in the shortening of the half‐relaxation time by beta‐adrenoceptor stimulation. In addition, beta‐adrenoceptor stimulation does not produce a marked change in the maximal tension level.


The FASEB Journal | 2002

Cardiac-specific overexpression of a high Ca2+ affinity mutant of SERCA2a attenuates in vivo pressure overload cardiac hypertrophy

Hiroyuki Nakayama; Kinya Otsu; Osamu Yamaguchi; Kazuhiko Nishida; Motoo Date; Kenichi Hongo; Yoichiro Kusakari; Toshihiko Toyofuku; Shungo Hikoso; Kazunori Kashiwase; Toshihiro Takeda; Yasushi Matsumura; Satoshi Kurihara; Masatsugu Hori; Michihiko Tada

In cardiomyocytes, calcium plays important roles as a signal in cardiac hypertrophy and contraction‐relaxation cycling. Elevation of Ca2+ concentration in myoplasm is associated with the onset and progression of hypertrophy as well as the enhancement of contractility. The cardiac Ca2+ ATPase (SERCA2a) of the sarcoplasmic reticulum plays a dominant role in lowering cytoplasmic calcium levels during relaxation and is regulated by phospholamban (PLN). To examine whether the modulation of SERCA2a activity results in the attenuation of cardiac hypertrophy and enhancement of contractility, we generated transgenic mice (TG) overexpressing a high calcium affinity SERCA2a mutant (K397/400E), lacking a functional association with PLN. In the TG hearts, the apparent affinity of SERCA2a for Ca2+ significantly increased compared with their nontransgenic littermate controls. The TG showed increased contraction and relaxation, with increases in the amplitude of Ca2+ transient and rapid Ca2+ decay. Upon induction of pressure overload by transverse aortic constriction, the TG developed less cardiac hypertrophy than littermate controls did. The activation of Ca2+‐sensitive protein kinase C by pressure overload was significantly attenuated in the TG hearts. Our findings indicate an association of SERCA2a activity with cardiac hypertrophy and thus a new therapeutic target for the prevention and treatment of cardiac hypertrophy.


Circulation Research | 2008

Interaction of α1-Adrenoceptor Subtypes With Different G Proteins Induces Opposite Effects on Cardiac L-type Ca2+ Channel

Jin O-Uchi; Hiroyuki Sasaki; Satoshi Morimoto; Yoichiro Kusakari; Hitomi Shinji; Toru Obata; Kenichi Hongo; Kimiaki Komukai; Satoshi Kurihara

We examined the effect of &agr;1-adrenoceptor subtype-specific stimulation on L-type Ca2+ current (ICa) and elucidated the subtype-specific intracellular mechanisms for the regulation of L-type Ca2+ channels in isolated rat ventricular myocytes. We confirmed the protein expression of &agr;1A- and &agr;1B-adrenoceptor subtypes at the transverse tubules (T-tubules) and found that simultaneous stimulation of these 2 receptor subtypes by nonsubtype selective agonist, phenylephrine, showed 2 opposite effects on ICa (transient decrease followed by sustained increase). However, selective &agr;1A-adrenoceptor stimulation (≥0.1 &mgr;mol/L A61603) only potentiated ICa, and selective &agr;1B-adrenoceptor stimulation (10 &mgr;mol/L phenylephrine with 2 &mgr; mol/L WB4101) only decreased ICa. The positive effect by &agr;1A-adrenoceptor stimulation was blocked by the inhibition of phospholipase C (PLC), protein kinase C (PKC), or Ca2+/calmodulin-dependent protein kinase II (CaMKII). The negative effect by &agr;1B-adrenoceptor stimulation disappeared after the treatment of pertussis toxin or by the prepulse depolarization, but was not attriburable to the inhibition of cAMP-dependent pathway. The translocation of PKC&dgr; and ϵ to the T-tubules was observed only after &agr;1A-adrenoceptor stimulation, but not after &agr;1B-adrenoceptor stimulation. Immunoprecipitaion analysis revealed that &agr;1A-adrenoceptor was associated with Gq/11, but &agr;1B-adrenoceptor interacted with one of the pertussis toxin-sensitive G proteins, Go. These findings demonstrated that the interactions of &agr;1-adrenoceptor subtypes with different G proteins elicit the formation of separate signaling cascades, which produce the opposite effects on ICa. The coupling of &agr;1A-adrenoceptor with Gq/11-PLC-PKC-CaMKII pathway potentiates ICa. In contrast, &agr;1B-adrenoceptor interacts with Go, of which the &bgr;&ggr;-complex might directly inhibit the channel activity at T-tubules.


The FASEB Journal | 2005

Presenilin 2 regulates the systolic function of heart by modulating Ca2+ signaling

Toshihiro Takeda; Michio Asahi; Osamu Yamaguchi; Shungo Hikoso; Hiroyuki Nakayama; Yoichiro Kusakari; Makoto Kawai; Kenichi Hongo; Yoshiharu Higuchi; Kazunori Kashiwase; Tetsuya Watanabe; Masayuki Taniike; Atsuko Nakai; Kazuhiko Nishida; Satoshi Kurihara; Dorit Donoviel; Alan Bernstein; Taisuke Tomita; Takeshi Iwatsubo; Masatsugu Hori; Kinya Otsu

Genetic studies of families with familial Alzheimers disease have implicated presenilin 2 (PS2) in the pathogenesis of this disease. PS2 is ubiquitously expressed in various tissues including hearts. In this study, we examined cardiac phenotypes of PS2 knockout (PS2KO) mice to elucidate a role of PS2 in hearts. PS2KO mice developed normally with no evidence of cardiac hypertrophy and fibrosis. Invasive hemodynamic analysis revealed that cardiac contractility in PS2KO mice increased compared with that in their littermate controls. A study of isolated papillary muscle showed that peak amplitudes of Ca2+ transients and peak tension were significantly higher in PS2KO mice than those in their littermate controls. PS2KO mouse hearts exhibited no change in expression of calcium regulatory proteins. Since it has been demonstrated that PS2 in brain interacts with sorcin, which serves as a modulator of cardiac ryanodine receptor (RyR2), we tested whether PS2 also interacts with RyR2. Immmunoprecipitation analysis showed that PS2, sorcin, and RyR2 interact with each other in HEK‐293 cells overexpressing these proteins or in mouse hearts. Immunohistochemistry of heart muscle indicated that PS2 colocalizes with RyR2 and sorcin at the Z‐lines. Elevated Ca2+ attenuated the association of RyR2 with PS2, whereas the association of sorcin with PS2 was enhanced. The enhanced Ca2+ transients and contractility in PS2KO mice were observed at low extracellular [Ca2+] but not at high levels of [Ca2+]. Taken together, our results suggest that PS2 plays an important role in cardiac excitation‐contraction coupling by interacting with RyR2.


American Journal of Physiology-heart and Circulatory Physiology | 2010

Role of Ca2+/calmodulin-dependent protein kinase II in the regulation of the cardiac L-type Ca2+ current during endothelin-1 stimulation

Kimiaki Komukai; Jin O-Uchi; Satoshi Morimoto; Makoto Kawai; Kenichi Hongo; Michihiro Yoshimura; Satoshi Kurihara

Endothelin-1 (ET-1) shows a positive inotropic effect on cardiac muscle. Although the L-type Ca(2+) current (I(Ca)) is one of the important determinants of cardiac excitation-contraction coupling, the effect of ET-1 on the I(Ca) is not always clear. The controversial results appear to be due to different patch-clamp methods. The present study measured the effect of ET-1 on the I(Ca) of rat ventricular myocytes using the perforated patch-clamp technique. The holding potential was set to -40 mV, and depolarization was applied every 10 s. ET-1 (10 nM) increased the I(Ca) in a monophasic manner. The current reached a steady state 15 min after the application of ET-1, when the measurement was done. Endothelin receptor subtype expression was also investigated using Western immunoblotting. ET(A)-receptor protein was expressed, but ET(B)-receptor protein was not expressed, in the cell membranes of rat ventricular myocytes. The effect of ET-1 on the I(Ca) was inhibited by a selective ET(A)-receptor antagonist, BQ-123, but not by a selective ET(B)-receptor antagonist, BQ-788. The effect was inhibited by protein kinase C (PKC) inhibitor chelerythrine and Ca(2+)/calmodulin-dependent protein kinase II (CaMKII) inhibitor KN-93, but not by its inactive analog KN-92. The effect of ET-1 was also blocked by another CaMKII inhibitor, autocamtide-2-related inhibitory peptide. These results suggest that ET-1 increases the I(Ca) via the ET(A)-receptor-PKC-CaMKII pathway.


Biochemical and Biophysical Research Communications | 2009

Protein kinase A-dependent phosphorylation of ryanodine receptors increases Ca2+ leak in mouse heart.

Satoshi Morimoto; Jin O-Uchi; Makoto Kawai; Toshiyuki Hoshina; Yoichiro Kusakari; Kimiaki Komukai; Hiroyuki Sasaki; Kenichi Hongo; Satoshi Kurihara

In heart failure, chronic catecholaminergic stimulation increases diastolic Ca(2+) leak from ryanodine receptors (RyRs) of sarcoplasmic reticulum (SR), possibly due to the phosphorylation of RyRs through the activation of protein kinase A (PKA) or Ca(2+)/calmodulin-dependent protein kinase II (CaMKII). In the present study, we attempted to identify which activated kinase is responsible for the enhanced Ca(2+) leak caused by beta-adrenergic stimulation. Trabeculae obtained from the hearts of adult male C57BL/6J mice were treated with isoproterenol and then permeabilized with saponin. To examine SR functions, Ca(2+) in SR was released with caffeine and measured with fluo-3. The Ca(2+) leak in isoproterenol-treated preparations was significantly increased when the PKA-dependent phosphorylation of RyR was increased without the involvement of CaMKII-dependent phosphorylation. Both the increase in Ca(2+) leak and the phosphorylation of RyR were blocked by a PKA inhibitor. Our results show that beta-adrenergic stimulation increases Ca(2+) leak from SR through PKA-dependent phosphorylation of RyR.


The Journal of Physiology | 1993

Alterations in contractile properties and Ca2+ transients by beta-and muscarinic receptor stimulation in ferret myocardium.

Kenichi Hongo; Etsuko Tanaka; Satoshi Kurihara

1. To clarify the mechanism which regulates the time course of twitch tension when beta‐ and muscarinic receptors are stimulated, intracellular Ca2+ transients, Ca2+ sensitivity of the contractile element and the cross‐bridge cycling rate (CCR) were measured in ferret ventricular muscles. 2. Isoprenaline (Iso; 0.1 microM) increased peaks of Ca2+ transients measured with aequorin and tension, and abbreviated the time courses of both signals. Addition of acetylcholine (ACh; 0.01‐1 microM) to the Iso‐treated preparation dose dependently decreased the peaks of both signals and restored the time course of Ca2+ transients. However, the time course of tension was not recovered by the addition of ACh, and the relaxation time in particular, was further shortened by ACh. Carbachol (1 microM) applied to the Iso‐treated preparation yielded similar results. 3. [Ca2+]i and tension at a quasi‐steady level of tetanic contraction, which was produced by ryanodine (5 microM) and repetitive stimulation, were measured and Ca2+ sensitivity of the contractile element was estimated. Iso (0.1 microM) decreased the Ca2+ sensitivity and the addition of ACh (1 microM) completely recovered it to the control level. 4. In order to measure CCR, the perturbation analysis method was applied to steady‐state tension of tetanic contraction. The CCR was not altered even when the tetanic tension level was decreased to 50% by decreasing [Ca2+]o. Iso (0.1 microM) slightly decreased the tetanic tension level and increased the CCR from 2.73 to 3.25 Hz. The effect of Iso was observed when the Iso‐decreased tension was recovered by an increase in [Ca2+]i. The addition of ACh (1 microM) recovered the CCR which was increased by Iso, to the control level. Atropine (10 microM) blocked the effect of ACh, and carbachol (1 microM) restored the CCR increased by Iso to the control level. 5. The time course of Ca2+ transients, Ca2+ sensitivity and CCR were antagonistically regulated by beta‐ and muscarinic receptor stimulation, but the time course of tension did not parallel the changes in these parameters. Therefore, these results suggest that the time course of tension, particularly the relaxation time, is not determined by the time course of Ca2+ transients, Ca2+ sensitivity and the CCR, and that other factors might be involved in the regulation of the time course of tension when beta‐ and muscarinic receptors are stimulated.


PLOS ONE | 2013

An Immunohistochemical Analysis of Tissue Thrombin Expression in the Human Atria

Keiichi Ito; Taro Date; Masahiro Ikegami; Kenichi Hongo; Masami Fujisaki; Daisuke Katoh; Takuya Yoshino; Ryuko Anzawa; Tomohisa Nagoshi; Seigo Yamashita; Keiichi Inada; Seiichiro Matsuo; Teiichi Yamane; Michihiro Yoshimura

Objective Thrombin, the final coagulation product of the coagulation cascade, has been demonstrated to have many physiological effects, including pro-fibrotic actions via protease-activated receptor (PAR)-1. Recent investigations have demonstrated that activation of the cardiac local coagulation system was associated with atrial fibrillation. However, the distribution of thrombin in the heart, especially difference between the atria and the ventricle, remains to be clarified. We herein investigated the expression of thrombin and other related proteins, as well as tissue fibrosis, in the human left atria and left ventricle. Methods We examined the expression of thrombin and other related molecules in the autopsied hearts of patients with and without atrial fibrillation. An immunohistochemical analysis was performed in the left atria and the left ventricle. Results The thrombin was immunohistologically detected in both the left atria and the left ventricles. Other than in the myocardium, the expression of thrombin was observed in the endocardium and the subendocardium of the left atrium. Thrombin was more highly expressed in the left atrium compared to the left ventricle, which was concomitant with more tissue fibrosis and inflammation, as detected by CD68 expression, in the left atrium. We also confirmed the expression of prothrombin in the left atrium. The expression of PAR-1 was observed in the endocardium, subendocardium and myocardium in the left atrium. In patients with atrial fibrillation, strong thrombin expression was observed in the left atrium. Conclusions The strong expression levels of thrombin, prothrombin and PAR-1 were demonstrated in the atrial tissues of human autopsied hearts.

Collaboration


Dive into the Kenichi Hongo's collaboration.

Top Co-Authors

Avatar

Satoshi Kurihara

Jikei University School of Medicine

View shared research outputs
Top Co-Authors

Avatar

Makoto Kawai

Jikei University School of Medicine

View shared research outputs
Top Co-Authors

Avatar

Kimiaki Komukai

Jikei University School of Medicine

View shared research outputs
Top Co-Authors

Avatar

Yoichiro Kusakari

Jikei University School of Medicine

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jin O-Uchi

Thomas Jefferson University

View shared research outputs
Top Co-Authors

Avatar

Seibu Mochizuki

Jikei University School of Medicine

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Ikuo Taniguchi

Jikei University School of Medicine

View shared research outputs
Researchain Logo
Decentralizing Knowledge