Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Kenichi Iwai is active.

Publication


Featured researches published by Kenichi Iwai.


Nature Communications | 2015

Aneuploidy generates proteotoxic stress and DNA damage concurrently with p53-mediated post-mitotic apoptosis in SAC-impaired cells

Akihiro Ohashi; Momoko Ohori; Kenichi Iwai; Yusuke Nakayama; Tadahiro Nambu; Daisuke Morishita; Tomohiro Kawamoto; Maki Miyamoto; Takaharu Hirayama; Masanori Okaniwa; Hiroshi Banno; Tomoyasu Ishikawa; Hitoshi Kandori; Kentaro Iwata

The molecular mechanism responsible that determines cell fate after mitotic slippage is unclear. Here we investigate the post-mitotic effects of different mitotic aberrations—misaligned chromosomes produced by CENP-E inhibition and monopolar spindles resulting from Eg5 inhibition. Eg5 inhibition in cells with an impaired spindle assembly checkpoint (SAC) induces polyploidy through cytokinesis failure without a strong anti-proliferative effect. In contrast, CENP-E inhibition causes p53-mediated post-mitotic apoptosis triggered by chromosome missegregation. Pharmacological studies reveal that aneuploidy caused by the CENP-E inhibitor, Compound-A, in SAC-attenuated cells causes substantial proteotoxic stress and DNA damage. Polyploidy caused by the Eg5 inhibitor does not produce this effect. Furthermore, p53-mediated post-mitotic apoptosis is accompanied by aneuploidy-associated DNA damage response and unfolded protein response activation. Because Compound-A causes p53 accumulation and antitumour activity in an SAC-impaired xenograft model, CENP-E inhibitors could be potential anticancer drugs effective against SAC-impaired tumours.


Journal of Medicinal Chemistry | 2013

Design and Synthesis of Potent Inhibitor of Apoptosis (IAP) Proteins Antagonists Bearing an Octahydropyrrolo[1,2-a]pyrazine Scaffold as a Novel Proline Mimetic.

Kentaro Hashimoto; Bunnai Saito; Naoki Miyamoto; Yuya Oguro; Daisuke Tomita; Zenyu Shiokawa; Moriteru Asano; Hiroyuki Kakei; Naohiro Taya; Masanori Kawasaki; Hiroyuki Sumi; Masato Yabuki; Kenichi Iwai; Sei Yoshida; Mie Yoshimatsu; Kazunobu Aoyama; Yohei Kosugi; Takashi Kojima; Nao Morishita; Douglas R. Dougan; Gyorgy Snell; Shinichi Imamura; Tomoyasu Ishikawa

To develop novel inhibitor of apoptosis (IAP) proteins antagonists, we designed a bicyclic octahydropyrrolo[1,2-a]pyrazine scaffold as a novel proline bioisostere. This design was based on the X-ray co-crystal structure of four N-terminal amino acid residues (AVPI) of the second mitochondria-derived activator of caspase (Smac) with the X-chromosome-linked IAP (XIAP) protein. Lead optimization of this scaffold to improve oral absorption yielded compound 45, which showed potent cellular IAP1 (cIAP1 IC(50): 1.3 nM) and XIAP (IC(50): 200 nM) inhibitory activity, in addition to potent tumor growth inhibitory activity (GI(50): 1.8 nM) in MDA-MB-231 breast cancer cells. X-ray crystallographic analysis of compound 45 bound to XIAP and to cIAP1 was achieved, revealing the various key interactions that contribute to the higher cIAPI affinity of compound 45 over XIAP. Because of its potent IAP inhibitory activities, compound 45 (T-3256336) caused tumor regression in a MDA-MB-231 tumor xenograft model (T/C: -53% at 30 mg/kg).


Bioorganic & Medicinal Chemistry | 2013

Synthetic studies of centromere-associated protein-E (CENP-E) inhibitors: 1.Exploration of fused bicyclic core scaffolds using electrostatic potential map.

Takaharu Hirayama; Masanori Okaniwa; Takashi Imada; Akihiro Ohashi; Momoko Ohori; Kenichi Iwai; Kouji Mori; Tomohiro Kawamoto; Akihiro Yokota; Toshimasa Tanaka; Tomoyasu Ishikawa

Centromere-associated protein-E (CENP-E), a mitotic kinesin that plays an important role in mitotic progression, is an attractive target for cancer therapeutic drugs. For the purpose of developing novel CENP-E inhibitors as cancer therapeutics, we investigated a fused bicyclic compound identified by high throughput screening, 4-oxo-4,5-dihydrothieno[3,4-c]pyridine-6-carboxamide 1a. Based on this scaffold, we designed inhibitors for efficient binding at the L5 site in CENP-E utilizing homology modeling as well as electrostatic potential map (EPM) analysis to enhance CENP-E inhibitory activity. This resulted in a new lead, 5-bromoimidazo[1,2-a]pyridine 7, which showed potent CENP-E enzyme inhibition (IC50: 50nM) and cellular activity with accumulation of phosphorylated histone H3 in HeLa cells. Our homology model and EPM analysis proved to be useful tools for the rational design of CENP-E inhibitors.


Journal of Medicinal Chemistry | 2015

Synthetic Studies on Centromere-Associated Protein-E (CENP-E) Inhibitors: 2. Application of Electrostatic Potential Map (EPM) and Structure-Based Modeling to Imidazo[1,2-a]pyridine Derivatives as Anti-Tumor Agents

Takaharu Hirayama; Masanori Okaniwa; Hiroshi Banno; Hiroyuki Kakei; Akihiro Ohashi; Kenichi Iwai; Momoko Ohori; Kouji Mori; Mika Gotou; Tomohiro Kawamoto; Akihiro Yokota; Tomoyasu Ishikawa

To develop centromere-associated protein-E (CENP-E) inhibitors for use as anticancer therapeutics, we designed novel imidazo[1,2-a]pyridines, utilizing previously discovered 5-bromo derivative 1a. By site-directed mutagenesis analysis, we confirmed the ligand binding site. A docking model revealed the structurally important molecular features for effective interaction with CENP-E and could explain the superiority of the inhibitor (S)-isomer in CENP-E inhibition vs the (R)-isomer based on the ligand conformation in the L5 loop region. Additionally, electrostatic potential map (EPM) analysis was employed as a ligand-based approach to optimize functional groups on the imidazo[1,2-a]pyridine scaffold. These efforts led to the identification of the 5-methoxy imidazo[1,2-a]pyridine derivative (+)-(S)-12, which showed potent CENP-E inhibition (IC50: 3.6 nM), cellular phosphorylated histone H3 (p-HH3) elevation (EC50: 180 nM), and growth inhibition (GI50: 130 nM) in HeLa cells. Furthermore, (+)-(S)-12 demonstrated antitumor activity (T/C: 40%, at 75 mg/kg) in a human colorectal cancer Colo205 xenograft model in mice.


Molecular Cancer Therapeutics | 2013

Antitumor Activity and Pharmacodynamic Biomarkers of a Novel and Orally Available Small-Molecule Antagonist of Inhibitor of Apoptosis Proteins

Hiroyuki Sumi; Masato Yabuki; Kenichi Iwai; Megumi Morimoto; Ryosuke Hibino; Masakazu Inazuka; Kentaro Hashimoto; Yohei Kosugi; Kazunobu Aoyama; Shunsuke Yamamoto; Mie Yoshimatsu; Hideki Yamasaki; Ryuichi Tozawa; Tomoyasu Ishikawa; Sei Yoshida

Inhibitor of apoptosis proteins (IAP), which are key regulators of apoptosis, are inhibited by second mitochondria-derived activator of caspase (SMAC). Small-molecule IAP antagonists have recently been reported as novel therapeutic treatments for cancer. In this study, we showed that the octahydro-pyrrolo[1,2-a]pyrazine derivative, T-3256336, is a novel and orally available small-molecule IAP antagonist. T-3256336 selectively binds to and antagonizes protein interactions involving cellular IAP-1 (cIAP-1), cIAP-2, and X-linked IAP (XIAP). T-3256336 induced the rapid proteasomal degradation of cIAP-1 and activated TNF-α–dependent extrinsic apoptosis signaling in cultured cells. In a MDA-MB-231-Luc breast cancer xenograft model, T-3256336 induced cIAP-1 degradation, TNF-α production, and caspase activation in tumors, which resulted in strong antitumor activities. T-3256336 induced increases in the plasma levels of TNF-α and fragmented cytokeratin-18, which correlated with the antitumor potency in MDA-MB-231-Luc xenograft models. This study provided further insights into biomarkers of IAP antagonists. Furthermore, our data provided evidence that T-3256336 is a promising new anticancer drug worthy of further evaluation and development. Mol Cancer Ther; 12(2); 230–40. ©2012 AACR.


PLOS ONE | 2015

A Novel Time-Dependent CENP-E Inhibitor with Potent Antitumor Activity.

Akihiro Ohashi; Momoko Ohori; Kenichi Iwai; Tadahiro Nambu; Maki Miyamoto; Tomohiro Kawamoto; Masanori Okaniwa

Centromere-associated protein E (CENP-E) regulates both chromosome congression and the spindle assembly checkpoint (SAC) during mitosis. The loss of CENP-E function causes chromosome misalignment, leading to SAC activation and apoptosis during prolonged mitotic arrest. Here, we describe the biological and antiproliferative activities of a novel small-molecule inhibitor of CENP-E, Compound-A (Cmpd-A). Cmpd-A inhibits the ATPase activity of the CENP-E motor domain, acting as a time-dependent inhibitor with an ATP-competitive-like behavior. Cmpd-A causes chromosome misalignment on the metaphase plate, leading to prolonged mitotic arrest. Treatment with Cmpd-A induces antiproliferation in multiple cancer cell lines. Furthermore, Cmpd-A exhibits antitumor activity in a nude mouse xenograft model, and this antitumor activity is accompanied by the elevation of phosphohistone H3 levels in tumors. These findings demonstrate the potency of the CENP-E inhibitor Cmpd-A and its potential as an anticancer therapeutic agent.


Bioorganic & Medicinal Chemistry | 2017

Identification of a new class of potent Cdc7 inhibitors designed by putative pharmacophore model: Synthesis and biological evaluation of 2,3-dihydrothieno[3,2-d]pyrimidin-4(1H)-ones

Osamu Kurasawa; Yuya Oguro; Tohru Miyazaki; Misaki Homma; Kouji Mori; Kenichi Iwai; Hideto Hara; Robert J. Skene; Isaac D. Hoffman; Akihiro Ohashi; Sei Yoshida; Tomoyasu Ishikawa; Nobuo Cho

Cell division cycle 7 (Cdc7) is a serine/threonine kinase that plays important roles in the regulation of DNA replication process. A genetic study indicates that Cdc7 inhibition can induce selective tumor-cell death in a p53-dependent manner, suggesting that Cdc7 is an attractive target for the treatment of cancers. In order to identify a new class of potent Cdc7 inhibitors, we generated a putative pharmacophore model based on in silico docking analysis of a known inhibitor with Cdc7 homology model. The pharmacophore model provided a minimum structural motif of Cdc7 inhibitor, by which preliminary medicinal chemistry efforts identified a dihydrothieno[3,2-d]-pyrimidin-4(1H)-one scaffold having a heteroaromatic hinge-binding moiety. The structure-activity relationship (SAR) studies resulted in the discovery of new, potent, and selective Cdc7 inhibitors 14a, c, e. Furthermore, the high selectivity of 14c, e for Cdc7 over Rho-associated protein kinase 1 (ROCK1) is discussed by utilizing a docking study with Cdc7 and ROCK2 crystal structures.


Embo Molecular Medicine | 2018

Anti‐tumor efficacy of a novel CLK inhibitor via targeting RNA splicing and MYC‐dependent vulnerability

Kenichi Iwai; Masahiro Yaguchi; Kazuho Nishimura; Yukiko Yamamoto; Toshiya Tamura; Daisuke Nakata; Ryo Dairiki; Yoichi Kawakita; Ryo Mizojiri; Yoshiteru Ito; Moriteru Asano; Hironobu Maezaki; Yusuke Nakayama; Misato Kaishima; Kozo Hayashi; Mika Teratani; Shuichi Miyakawa; Misa Iwatani; Maki Miyamoto; Michael G. Klein; Wes Lane; Gyorgy Snell; Richard Tjhen; Xingyue He; Sai Pulukuri; Toshiyuki Nomura

The modulation of pre‐mRNA splicing is proposed as an attractive anti‐neoplastic strategy, especially for the cancers that exhibit aberrant pre‐mRNA splicing. Here, we discovered that T‐025 functions as an orally available and potent inhibitor of Cdc2‐like kinases (CLKs), evolutionally conserved kinases that facilitate exon recognition in the splicing machinery. Treatment with T‐025 reduced CLK‐dependent phosphorylation, resulting in the induction of skipped exons, cell death, and growth suppression in vitro and in vivo. Further, through growth inhibitory characterization, we identified high CLK2 expression or MYC amplification as a sensitive‐associated biomarker of T‐025. Mechanistically, the level of CLK2 expression correlated with the magnitude of global skipped exons in response to T‐025 treatment. MYC activation, which altered pre‐mRNA splicing without the transcriptional regulation of CLKs, rendered cancer cells vulnerable to CLK inhibitors with synergistic cell death. Finally, we demonstrated in vivo anti‐tumor efficacy of T‐025 in an allograft model of spontaneous, MYC‐driven breast cancer, at well‐tolerated dosage. Collectively, our results suggest that the novel CLK inhibitor could have therapeutic benefits, especially for MYC‐driven cancer patients.


Bioorganic & Medicinal Chemistry | 2017

2-Aminomethylthieno[3,2-d]pyrimidin-4(3H)-ones bearing 3-methylpyrazole hinge binding moiety: Highly potent, selective, and time-dependent inhibitors of Cdc7 kinase

Osamu Kurasawa; Misaki Homma; Yuya Oguro; Tohru Miyazaki; Kouji Mori; Noriko Uchiyama; Kenichi Iwai; Akihiro Ohashi; Hideto Hara; Sei Yoshida; Nobuo Cho

In order to increase the success rate for developing new Cdc7 inhibitors for cancer therapy, we explored a new chemotype which can comply with the previously-constructed pharmacophore model. Substitution of a pyridine ring of a serendipitously-identified Cdc7 inhibitor 2b with a 3-methylpyrazole resulted in a 4-fold increase in potency and acceptable kinase selectivity, leading to the identification of thieno[3,2-d]pyrimidin-4(3H)-one as an alternative scaffold. Structure-activity relationship (SAR) study revealed that incorporation of a substituted aminomethyl group into the 2-position improved kinase selectivity. Indeed, a pyrrolidinylmethyl derivative 10c was a potent Cdc7 inhibitor (IC50=0.70nM) with high selectivity (Cdk2/Cdc7≥14,000, ROCK1/Cdc7=200). It should be noted that 10c exhibited significant time-dependent Cdc7 inhibition with slow dissociation kinetics, cellular pharmacodynamic (PD) effects, and COLO205 growth inhibition. Additionally, molecular basis of high kinase selectivity of 10c is discussed by using the protein structures of Cdc7 and Cdk2.


Oncotarget | 2016

Motor activity of centromere-associated protein-E contributes to its localization at the center of the midbody to regulate cytokinetic abscission

Akihiro Ohashi; Momoko Ohori; Kenichi Iwai

Accurate control of cytokinesis is critical for genomic stability to complete high-fidelity transmission of genetic material to the next generation. A number of proteins accumulate in the intercellular bridge (midbody) during cytokinesis, and the dynamics of these proteins are temporally and spatially orchestrated to complete the process. In this study, we demonstrated that localization of centromere-associated protein-E (CENP-E) at the midbody is involved in cytokinetic abscission. The motor activity of CENP-E and the C-terminal midbody localization domain, which includes amino acids 2659–2666 (RYFDNSSL), are involved in the anchoring of CENP-E to the center of the midbody. Furthermore, CENP-E motor activity contributes to the accumulation of protein regulator of cytokinesis 1 (PRC1) in the midbody during cytokinesis. Midbody localization of PRC1 is critical to the antiparallel microtubule structure and recruitment of other midbody-associated proteins. Therefore, CENP-E motor activity appears to play important roles in the organization of these proteins to complete cytokinetic abscission. Our findings will be helpful for understanding how each step of cytokinesis is regulated to complete cytokinetic abscission.

Collaboration


Dive into the Kenichi Iwai's collaboration.

Top Co-Authors

Avatar

Akihiro Ohashi

Takeda Pharmaceutical Company

View shared research outputs
Top Co-Authors

Avatar

Tomoyasu Ishikawa

Takeda Pharmaceutical Company

View shared research outputs
Top Co-Authors

Avatar

Momoko Ohori

Takeda Pharmaceutical Company

View shared research outputs
Top Co-Authors

Avatar

Masanori Okaniwa

Takeda Pharmaceutical Company

View shared research outputs
Top Co-Authors

Avatar

Tadahiro Nambu

Takeda Pharmaceutical Company

View shared research outputs
Top Co-Authors

Avatar

Tomohiro Kawamoto

Takeda Pharmaceutical Company

View shared research outputs
Top Co-Authors

Avatar

Maki Miyamoto

Takeda Pharmaceutical Company

View shared research outputs
Top Co-Authors

Avatar

Takaharu Hirayama

Takeda Pharmaceutical Company

View shared research outputs
Top Co-Authors

Avatar

Hiroshi Banno

Takeda Pharmaceutical Company

View shared research outputs
Top Co-Authors

Avatar

Kouji Mori

Takeda Pharmaceutical Company

View shared research outputs
Researchain Logo
Decentralizing Knowledge