Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Kenji Hirai is active.

Publication


Featured researches published by Kenji Hirai.


Science | 2013

Shape-Memory Nanopores Induced in Coordination Frameworks by Crystal Downsizing

Yoko Sakata; Mio Kondo; Kenji Hirai; Nao Horike; Yohei Takashima; Hiromitsu Uehara; Nicolas Louvain; Mikhail Meilikhov; Takaaki Tsuruoka; Seiji Isoda; Wataru Kosaka; Osami Sakata; Susumu Kitagawa

Size Affects Shape Porous molecular framework materials can adopt a different phase when guest molecules absorb and uniformly distort the framework. Usually the framework returns to its original shape when the guests desorb. Sakata et al. (p. 193) noted that because surface stress drives this process, it might be avoided in smaller crystals. Indeed, a flexible porous coordination polymer, [Cu2(dicarboxylate)2(amine)]n, could retain the structure induced by guest molecules such as methanol if crystallites were made sufficiently small (submicrometer scale) and did so to a greater degree as the crystallite dimensions decreased. A porous material retains its framework shape after guest molecules desorb if its crystallites are sufficiently small. Flexible porous coordination polymers change their structure in response to molecular incorporation but recover their original configuration after the guest has been removed. We demonstrated that the crystal downsizing of twofold interpenetrated frameworks of [Cu2(dicarboxylate)2(amine)]n regulates the structural flexibility and induces a shape-memory effect in the coordination frameworks. In addition to the two structures that contribute to the sorption process (that is, a nonporous closed phase and a guest-included open phase), we isolated an unusual, metastable open dried phase when downsizing the crystals to the mesoscale, and the closed phase was recovered by thermal treatment. Crystal downsizing suppressed the structural mobility and stabilized the open dried phase. The successful isolation of two interconvertible empty phases, the closed phase and the open dried phase, provided switchable sorption properties with or without gate-opening behavior.


Nature Materials | 2012

Mesoscopic architectures of porous coordination polymers fabricated by pseudomorphic replication

Julien Reboul; Nao Horike; Manuel Tsotsalas; Kenji Hirai; Hiromitsu Uehara; Mio Kondo; Nicolas Louvain; Osami Sakata; Susumu Kitagawa

The spatial organization of porous coordination polymer (PCP) crystals into higher-order structures is critical for their integration into separation systems, heterogeneous catalysts, ion/electron transport and photonic devices. Here, we demonstrate a rapid method to spatially control the nucleation site, leading to the formation of mesoscopic architecture made of PCPs, in both two and three dimensions. Inspired by geological processes, this method relies on the morphological replacement of a shaped sacrificial metal oxide used both as a metal source and as an architecture-directing agent by an analogous PCP architecture. Spatiotemporal harmonization of the metal oxide dissolution and the PCP crystallization allowed the preservation of very fine mineral morphological details of periodic alumina inverse opal structures. The replication of randomly structured alumina aerogels resulted in a PCP architecture with hierarchical porosity in which the hydrophobic micropores of the PCP and the mesopores/macropores inherited from the parent aerogels synergistically enhanced the materials selectivity and mass transfer for water/ethanol separation.


Angewandte Chemie | 2009

Heterogeneously Hybridized Porous Coordination Polymer Crystals: Fabrication of Heterometallic Core–Shell Single Crystals with an In-Plane Rotational Epitaxial Relationship†

Kenji Hirai; Keiji Nakagawa; Yohei Takashima; Ryotaro Matsuda; Takaaki Tsuruoka; Mio Kondo; Rie Haruki; Daisuke Tanaka; Hirotoshi Sakamoto; Satoru Shimomura; Osami Sakata; Susumu Kitagawa

MOF on MOF: Core-shell porous coordination polymer (PCP) crystals are fabricated at the single-crystal level by epitaxial growth in solution. Synchrotron X-ray diffraction measurements unveiled the structural relationship between the shell crystal and the core crystal, where in-plane rotational epitaxial growth compensates the difference in lattice constant.


Angewandte Chemie | 2011

Sequential Functionalization of Porous Coordination Polymer Crystals

Kenji Hirai; Mio Kondo; Hiromitsu Uehara; Osami Sakata; Susumu Kitagawa

Crystal extractor: heterostructured porous coordination polymer crystals fabricated using epitaxial growth have two contradictory porous functions, namely size selectivity and high storage. The crystals not only extract linear petroleum molecules from a mixture with its branched isomer, even at very low concentrations of linear isomer (1 wtu2009%), but also shows improved accumulation of the molecules in its pores.


Angewandte Chemie | 2013

Binary Janus Porous Coordination Polymer Coatings for Sensor Devices with Tunable Analyte Affinity

Mikhail Meilikhov; Kenji Hirai; Roland A. Fischer; Susumu Kitagawa

Janus MOF: thin films consisting of non-centrosymmetric heterostructured metal-organic frameworks (MOFs) were fabricated directly on quartz-crystal microbalance (QCM) sensor devices. Depending on the spatial configuration of two frameworks, the thin MOF films could tune the affinity for analytes, thus giving high selectivity to the QCM sensors.


Journal of the American Chemical Society | 2011

Porous coordination polymer hybrid device with quartz oscillator: effect of crystal size on sorption kinetics.

Hiromitsu Uehara; Stéphane Diring; Ziya Kalay; Manuel Tsotsalas; Masashi Nakahama; Kenji Hirai; Mio Kondo; Osami Sakata; Susumu Kitagawa

A new strategy to synthesize monodispersed porous coordination polymer (PCP) nanocrystals at room temperature was developed and utilized for the formation of PCP thin films on gold substrates with fine control over the crystal sizes using the coordination modulation method. Hybridization of these PCP thin films with an environment-controlled quartz crystal microbalance system allowed determining the adsorption properties for organic vapors (methanol and hexane). In the case of high sensitivity (at the low-concentration dosing of analytes), the sensor response depended on the crystal size but not on the type of analyte. In contrast, at the high-concentration dosing, a clear dependence of the sorption kinetics on the analyte was observed due to significant sorbate-sorbate interaction.


Chemical Communications | 2012

Targeted functionalisation of a hierarchically-structured porous coordination polymer crystal enhances its entire function

Kenji Hirai; Mio Kondo; Mikhail Meilikhov; Yoko Sakata; Osami Sakata; Susumu Kitagawa

Spatiospecific functionalisation of a shell crystal was performed in a core-shell crystal of a porous coordination polymer (PCP) via post-synthetic modification (PSM). The shell crystal allowed the core crystal to selectively accumulate N,N-dimethylaniline (DMA) and afford the intense exciplex fluorescence.


Journal of the American Chemical Society | 2014

Diffusion-Coupled Molecular Assembly: Structuring of Coordination Polymers Across Multiple Length Scales

Kenji Hirai; Julien Reboul; Nobuhiro Morone; John E. Heuser; Susumu Kitagawa

Porous coordination polymers (PCPs) are an intriguing class of molecular-based materials because of the designability of framework scaffolds, pore sizes and pore surface functionalities. Besides the structural designability at the molecular scale, the structuring of PCPs into mesoscopic/macroscopic morphologies has attracted much attention due to the significance for the practical applications. The structuring of PCPs at the mesoscopic/macroscopic scale has been so far demonstrated by the spatial localization of coordination reactions on the surface of templates or at the phase boundaries. However, these methodologies have never been applied to the fabrication of solid-solution or multivariate metal-organic frameworks (MOFs), in which multiple components are homogeneously mixed. Herein, we demonstrate the structuring of a box-type superstructure comprising of a solid-solution PCP by integrating a bidirectional diffusion of multiple organic ligands into molecular assembly. The parent crystals of [Zn2(ndc)2(bpy)]n were placed in the DMF solution of additional organic component of H2bdc, and the temperature was rapidly elevated up to 80 °C (ndc = 1,4-naphthalenedicarboxylate, bpy = 4,4-bipyridyl, bdc = 1,4-benzenedicarboxylate). The dissolution of the parent crystals induced the outward diffusion of components; contrariwise, the accumulation of the other organic ligand of H2bdc induced the inward diffusion toward the surface of the parent crystals. This bidirectional diffusion of multiple components spatially localized the recrystallization at the surface of cuboid parent crystals; therefore, the nanocrystals of a solid-solution PCP ([Zn2(bdc)1.5(ndc)0.5(bpy)]n) were organized into a mesoscopic box superstructure. Furthermore, we demonstrated that the box superstructures enhanced the mass transfer kinetics for the separation of hydrocarbons.


Journal of Materials Chemistry C | 2014

Impact of crystal orientation on the adsorption kinetics of a porous coordination polymer–quartz crystal microbalance hybrid sensor

Kenji Hirai; Kenji Sumida; Mikhail Meilikhov; Nicolas Louvain; Masashi Nakahama; Hiromitsu Uehara; Susumu Kitagawa

The hybridization of porous coordination polymers (PCPs) with electronic devices is a powerful strategy for developing systems that are suitable for advanced applications, such as chemical sensing. The quartz crystal microbalance (QCM) technique is one that allows minute mass changes to be resolved with a high temporal resolution, and the growth of PCP crystals that provide selective adsorption properties on a QCM substrate can facilitate the rapid detection of certain molecules from a gas or vapour mixture. Herein, we demonstrate the immobilization of the flexible PCP Zn(NO2-ip)(bpy) (Zn-CID-5; NO2-ip2− = 5-nitroisophthalate, bpy = 4,4′-bipyridine) on QCM substrates and investigate the adsorptive properties of the fabricated systems. Notably, the crystal orientation could be controlled by the anchoring of chemical functionalities on the substrate surface, or by the addition of coordination modulators (e.g. 4-phenylpyridine) at the time of growth of the PCP crystals on the substrates. Here, the crystal orientation plays a significant role in determining the detection kinetics of organic vapours (e.g. methanol), and the [010]-oriented case which displays the fastest adsorption kinetics among the samples tested is studied under mixed component (methanol–hexane) conditions to demonstrate its response profile. In all, the results demonstrate the potential utility of PCP/QCM hybrid systems in sensor applications, and also serve to highlight the importance of optimizing the physical orientation of crystal growth in such systems to maximize the overall performance of the system.


Langmuir | 2011

Liquid phase separation of polyaromatics on [Cu2(BDC)2(dabco)].

Michael Maes; Stijn Schouteden; Kenji Hirai; Susumu Kitagawa; Dirk E. De Vos

The porous coordination polymer (PCP) [Cu(2)(BDC)(2)(dabco)] is capable of selectively adsorbing up to 25 wt % of either 1-methylnaphthalene or 2-methylnaphthalene. Uptakes of unsubstituted naphthalene and 1,4-dimethylnaphthalene are significantly lower (7-13 wt %), suggesting that monomethyl substituted polyaromatics can be separated from the other fractions. Furthermore, this PCP can perform the difficult separation of 1-methylnaphthalene from 2-methylnaphthalene with separation factors as high as 2.6, proving that specific interactions of the methyl group with the lattice play an important role in determining the adsorption selectivity.

Collaboration


Dive into the Kenji Hirai's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Osami Sakata

National Institute for Materials Science

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge