Kenji Setoura
Osaka University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Kenji Setoura.
ACS Nano | 2013
Kenji Setoura; Yudai Okada; Daniel Werner; Shuichi Hashimoto
Understanding the nanoscale heating-induced local thermal response is important but hampered by lack of information on temperatures at such small scales. This paper reports laser-induced heating and thermal equilibration of metal nanoparticles supported on different substrates and immersed in several media. We use single-particle spectroscopy to monitor nanoparticle temperature rises due to laser excitation. Because of changes in the refractive index of the surrounding medium, the scattering spectrum of the gold nanoparticles undergoes a shift that is related to the temperature of the system. We find that the temperature increase depends on both the surrounding medium and the supporting substrate. We furthermore model the nanoparticle temperature using a simplified 1-D heat conduction model with an effective thermal conductivity that takes both substrate and environment into account. The results from this model are also compared to a more detailed 2-D heat transfer analysis. The results presented here are quite new and important to many plasmonic nanoparticle applications where the strong absorption cross section of the nanoparticles leads to a significant temperature rise. In particular, the current work introduces an analysis that can be easily implemented to model the temperature of a nanoparticle supported on a substrate, as is the case in many single-particle measurements.
Langmuir | 2014
Tetsuro Katayama; Kenji Setoura; Daniel Werner; Hiroshi Miyasaka; Shuichi Hashimoto
The photothermal generation of nanoscale vapor bubbles around noble metal nanoparticles is of significant interest, not only in understanding the underlying mechanisms responsible for photothermal effects, but also to optimize photothermal effects in applications such as photothermal cancer therapies. Here, we describe the dynamics in the 400-900 nm regime of the formation and evolution of nanobubbles around colloidal gold nanoparticles using picosecond pump-probe optical measurements. From excitations of 20-150 nm colloidal gold nanoparticles with a 355 nm, 15 ps laser, time-dependent optical extinction signals corresponding to nanobubble formation were recorded. The extinction spectra associated with nanobubbles of different diameters were simulated by considering a concentric spherical core-shell model within the Mie theory framework. In the simulations, we assumed an increase in particle temperature. From temporal changes in the experimental data of transient extinctions, we estimated the temporal evolution of the nanobubble diameter. Corrections to bubble-free temperature effects on the transient extinction decays were applied in these experiments by suppressing bubble formation using pressures as high as 60 MPa. The results of this study suggest that the nanobubbles generated around a 60 nm-diameter gold nanoparticle using a fluence of 5.2 mJ cm(-2) had a maximum diameter of 260 ± 40 nm, and a lifetime of approximately 10 ns. The combination of fast transient extinction spectral measurements and spectral simulations provides insights into plasmonic nanobubble dynamics.
Journal of the American Chemical Society | 2016
Yoichi Kobayashi; Tetsuro Katayama; Takuya Yamane; Kenji Setoura; Syoji Ito; Hiroshi Miyasaka; Jiro Abe
Stepwise two-photon excitations have been attracting much interest because of their much lower power thresholds compared with simultaneous two-photon processes and because some stepwise two-photon processes can be initiated by a weak incoherent excitation light source. Here we apply stepwise two-photon optical processes to the photochromic bridged imidazole dimer, whose solution instantly changes color upon UV irradiation and quickly reverts to the initial color thermally at room temperature. We synthesized a zinc tetraphenylporphyrin (ZnTPP)-substituted bridged imidazole dimer, and wide ranges of time-resolved spectroscopic studies revealed that a ZnTPP-linked bridged imidazole dimer shows efficient visible stepwise two-photon-induced photochromic reactions upon excitation at the porphyrin moiety. The fast photoswitching property combined with stepwise two-photon processes is important not only for the potential for novel photochromic materials that are sensitive to the incident light intensity but also for fundamental photochemistry using higher excited states.
ACS Applied Materials & Interfaces | 2017
Koichiro Saito; Kenji Setoura; Syoji Ito; Hiroshi Miyasaka; Yoshitaka Mitsuda; Tetsu Tatsuma
When plasmonic nanoparticles are placed on a highly refractive semiconductor substrate, we can expect three different effects: (i) resonance mode splitting, (ii) asymmetric light scattering based on the split modes, and (iii) site-selective nanoetching due to plasmon-induced charge separation (PICS) at the nanoparticle-semiconductor interface. Here, we develop novel photofunctional materials by taking advantage of those three effects. More specifically, we control the asymmetric scattering of Ag nanocubes on TiO2 by PICS, so as to develop materials for photodrawing of one-way visible translucent images and multicolor scattering images. The one-way visible translucent images, which are translucent scattering images visible only from the back side, are drawn by anaerobic bottom-selective etching of the Ag nanocubes. For drawing the multicolor scattering images, a scattering color of Ag nanocubes is changed from yellow to green by the anaerobic bottom-selective etching and from yellow to red by aerobic nonselective etching. We also theoretically and experimentally examined the contribution of a possible thermal effect to the nanoetching, and revealed that the contribution is negligible; Ag nanocubes on TiO2 are stable even at 473 K for 2 h in the dark, whereas the theoretically expected temperature increase under light is less than 1 K. In addition, we developed methods to stabilize the Ag nanocubes by inactivating PICS. When Ag nanocubes on TiO2 are coated with a thin polymer layer, PICS is decelerated and the stability is improved. Replacing TiO2 with diamond, which does not accept electrons from plasmonic nanoparticles, is also an effective method to stabilize the nanocubes.
Optical Manipulation Conference | 2018
Yosuke Minowa; Tatsuro Suzuki; Kenji Setoura; Syoji Ito; Hiroshi Miyasaka; Masaaki Ashida
We fabricated semiconductor cadmium selenide (CdSe) quantum dots via the pulsed laser ablation in the superfluid helium. The fabricated quantum dots showed blue-shifted fluorescence due to the strong quantum confinement effect. The fluorescence blinking phenomena were also observed indicating the single photon emission process. Our proposed scheme is a simple, robust, and reliable method to fabricate quantum dots and to introduce the highly fluorescence nanoparticles into superfluid helium appropriate for resonant optical manipulation and nano-tracers for liquid helium visualization.
Optical Manipulation Conference | 2018
Kenji Setoura; Syoji Ito; Hiroshi Miyasaka
Gold nanoparticles (Au NPs) exhibit strong light absorption due to localized surface plasmon resonance (LSPR), and efficiently convert light energy into heat under illumination. Heat transfer from Au NPs to surrounding matrices induces an increase in temperature, resulting in nanobubbles generation owing to explosive evaporation of the medium. In particular, stationary bubbles can be produced by illuminating CW laser for single Au NPs. These stationary bubbles in microscopic region drive fluid convection of medium and suggest the potential application to the manipulation of colloidal particles and molecules. In the present work, we have investigated the thermo-physical properties of the stationary bubbles and fluid convection of surrounding water by integrating experimental results with those by the theoretical calculation.
Optical Manipulation Conference | 2018
Syoji Ito; Kenji Setoura; Keisuke Fujita; Hiroshi Miyasaka
Fluorescence correlation spectroscopy was applied to the evaluation of the local heating at the focal spot of nearinfrared laser for optical trapping. Based on the translational diffusion coefficient of probe dyes at the focal spot in solution, the relation between temperature rise and incident laser power, ΔT/ΔP, were determined for water, ethylene glycol, 1-pentanol, 1-hexanol, 1-octanol, 1-nonanol, and 1-decanol. The value of ΔT/ΔP linearly increased with a/l (a and l is the absorption coefficient and thermal conductivity of solvent, respectively) as predicted by a simple theoretical model.
Journal of Physical Chemistry Letters | 2018
Syoji Ito; Morio Mitsuishi; Kenji Setoura; Mamoru Tamura; Takuya Iida; Masakazu Morimoto; Masahiro Irie; Hiroshi Miyasaka
Not only the energy but also the momentum of photons transfers to material via photoabsorption; this momentum transfer, known as radiation pressure, can induce motions of small particles. It can therefore be expected to induce mechanical motions of mesoscopic materials synchronized with the reversible change of their absorption coefficient by external stimuli. We demonstrated quantitative photomechanical motions in mesoscopic regions by combining optical tweezer and photochromic reactions of diarylethene (DAE). A microparticle including DAE was optically trapped with 532 nm laser and the absorption band of the DAE was photoswitched with UV laser, resulting in the modulation of the radiation force through the change in the complex dielectric constant of the particle. In this process, mesoscopic mechanical motions were successfully induced by the photochromic reaction. The present approach is potentially applicable in a wide variety of nano/micromechanical devices and also paves the way for monitoring the absorption of photons by molecules via photomechanical response.
Journal of Physical Chemistry C | 2012
Kenji Setoura; Daniel Werner; Shuichi Hashimoto
Journal of Physical Chemistry C | 2014
Michael Strasser; Kenji Setoura; Uwe Langbein; Shuichi Hashimoto