Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Kenji Shiota is active.

Publication


Featured researches published by Kenji Shiota.


Journal of Environmental Quality | 2011

Enhanced Transformation of Lead Speciation in Rhizosphere Soils Using Phosphorus Amendments and Phytostabilization: An X-ray Absorption Fine Structure Spectroscopy Investigation

Yohey Hashimoto; Masaki Takaoka; Kenji Shiota

To formulate successful phytostabilization strategies in a shooting range soil, understanding how heavy metals are immobilized at the molecular level in the rhizosphere soil is critical. Lead (Pb) speciation and solubility in rhizosphere soils of five different plant species were investigated using extended X-ray absorption fine structure (EXAFS) spectroscopy and chemical extraction. The EXAFS analysis indicated that Pb occurred as PbCO (37%), Pb sorbed to organic matter (Pb-org: 15%), and Pb sorbed to pedogenic birnessite and/or ferrihydrite (Pb-ox: 36%) in the bulk soil. Comparison of the EXAFS spectra between bulk and rhizosphere soils demonstrated notable differences in fine structure, indicating that Pb species had been modified by rhizosphere processes. The estimated proportion of PbCO (25%) in the buckwheat soil was smaller than the other rhizosphere soils (35-39%). The addition of P significantly reduced Pb solubility in the bulk and rhizosphere soil except in the rhizosphere of buckwheat, for which the Pb solubility was 10-fold greater than in the other P-amended soils. This larger solubility in the buckwheat rhizosphere could not be explained by the total Pb speciation in the soil but was presumably related to the acidifying effect of buckwheat, resulting in a decrease of the soil pH by 0.4 units. The reduced Pb solubility by P amendment resulted from the transformation of preexisting PbCO (37%) into Pb(PO)Cl (26-32%) in the bulk and rhizosphere soils. In the P-amended rhizosphere soils, Pb-org species were no longer detected, and the Pb-ox pool increased (51-57%). The present study demonstrated that rhizosphere processes modify Pb solubility and speciation in P-amended soils and that some plant species, like buckwheat, may impair the efficiency of Pb immobilization by P amendments.


Science of The Total Environment | 2011

EXAFS speciation and phytoavailability of Pb in a contaminated soil amended with compost and gypsum.

Yohey Hashimoto; Noriko Yamaguchi; Masaki Takaoka; Kenji Shiota

Due to unregulated uses of lead pellets for hunting purposes in Japan, soils and sediments in some river basins and wetlands have become highly contaminated with Pb. Deterioration of natural vegetation has occurred sporadically in these areas, and therefore revegetation is needed for ecological restoration. The objectives of the present study were to assess the effects of surface applications of compost and gypsum amendments on Pb availability to a watercress plant (Nasturtium officinale W.T. Aiton) and molecular-scale speciation of Pb in soil solid phases. The compost and gypsum amendments significantly decreased dissolved Pb and Sb in pore water. The concentration of Pb in aboveground plant tissues was 190mg kg(-1) in the control soil and was reduced to <20mg kg(-1) in the compost and gypsum-amended soils. The concentration of Sb in plants grown in the control soil was 13mg kg(-1), whereas that in the soils receiving compost and gypsum decreased below detectable levels. Redox potential was higher in vegetated soils (ave. 349mV) than in the unvegetated soils (ave. 99mV) due to oxygen introduced by plant roots. Extended X-ray absorption fine structure (EXAFS) spectroscopy illustrated that Pb occurred as Pb sorbed on birnessite and/or ferrihydrite (Pb-Mn/Fe, ~60%) and Pb sorbed on organic matter (Pb-org, ~15%), and galena (PbS, ~10%) in the vegetated and unvegetated control soils. The compost amendment increased the proportion of Pb-org by 2-fold than in the control soils. The amended soils with plant growth decreased the proportion of Pb-Mn/Fe phases by half of that without plant growth. Galena and anglesite (PbSO(4)) were not detected in compost-amended soils and even in gypsum-amended soils since a significant soil reduction to anoxic levels did not occur in the entire soil. The present study indicated that, under flooded conditions, surface applications of compost and gypsum amendments reduced plant Pb uptake from the Pb contaminated soil.


Analytical Chemistry | 2015

Cesium Speciation in Dust from Municipal Solid Waste and Sewage Sludge Incineration by Synchrotron Radiation Micro-X-ray Analysis

Kenji Shiota; Masaki Takaoka; Takashi Fujimori; Kazuyuki Oshita; Yasuko Terada

The chemical behavior of Cs in waste incineration processes is important to consider when disposing of radionuclide-contaminated waste from the Fukushima Daiichi nuclear power plant accident in Japan. To determine the speciation of Cs, we attempted the direct speciation of trace amounts of stable Cs in the dust from municipal solid waste incineration (MSWI) and sewage sludge incineration (SSI) by micro-X-ray fluorescence (μ-XRF) and micro-X-ray absorption fine structure (μ-XAFS) at the SPring-8 facility. The μ-XRF results revealed that locally produced Cs was present in MSWI and SSI dust within the cluster size range of 2-10 μm. The μ-XAFS analysis confirmed that the speciation of Cs in MSWI dust was similar to that of CsCl, while in SSI dusts it was similar to pollucite. The solubility of Cs was considered to be influenced by the exact Cs species present in incineration residue.


Journal of Environmental Radioactivity | 2015

Behavior of cesium in municipal solid waste incineration.

Kazuyuki Oshita; Hiroshi Aoki; Satoshi Fukutani; Kenji Shiota; Takashi Fujimori; Masaki Takaoka

As a result of the Fukushima Daiichi Nuclear Power Plant accident on March 11, 2011 in Japan radioactive nuclides, primarily (134)Cs and (137)Cs were released, contaminating municipal solid waste and sewage sludge in the area. Although stabilizing the waste and reducing its volume is an important issue differing from Chernobyl nuclear power plant accident, secondary emission of radioactive nuclides as a result of any intermediate remediation process is of concern. Unfortunately, there is little research on the behavior of radioactive nuclides during waste treatment. This study focuses on waste incineration in an effort to clarify the behavior of radioactive nuclides, specifically, refuse-derived fuel (RDF) with added (133)Cs (stable nuclide) or (134)Cs (radioactive nuclide) was incinerated in laboratory- and pilot-scale experiments. Next, thermogravimetric (TG) and differential thermal analysis (DTA) of stable Cs compounds, as well as an X-ray absorption fine structure (XAFS) analysis of Cs concentrated in the ashes were performed to validate the behavior and chemical forms of Cs during the combustion. Our results showed that at higher temperatures and at larger equivalence ratios, (133)Cs was distributed to the bottom ash at lower concentration, and the influence of the equivalence ratio was more significant at lower temperatures. (134)Cs behaved in a similar fashion as (133)Cs. We found through TG-DTA and XAFS analysis that a portion of Cs in RDF vaporizes and is transferred to fly ash where it exists as CsCl in the MSW incinerator. We conclude that Cs-contaminated municipal solid wastes could be incinerated at high temperatures resulting in a small amount of fly ash with a high concentration of radioactive Cs, and a bottom ash with low concentrations.


Journal of Hazardous Materials | 2016

Synergetic inhibition of thermochemical formation of chlorinated aromatics by sulfur and nitrogen derived from thiourea: Multielement characterizations.

Takashi Fujimori; Madoka Nakamura; Masaki Takaoka; Kenji Shiota; Yoshinori Kitajima

Nitrogen and sulfur (N/S)-containing compounds inhibit the formation of polychlorinated dibenzo-p-dioxins (PCDDs) and furans (PCDFs) in thermal processes. However, few studies have examined the inhibition mechanisms of N/S-containing compounds. In the present study, we focused on thiourea [(NH2)2CS] as such a compound and investigated its inhibition effects and mechanisms. The production of PCDD/Fs, polychlorinated biphenyls (PCBs), and chlorobenzenes (CBzs) were inhibited by >99% in the model fly ash in the presence of 1.0% thiourea after heating at 300 °C. Experimental results using real fly ash series were indicative of the thermal destruction of these chlorinated aromatics by thiourea. Multielement characterization using K-edge X-ray absorption fine structures of copper, chlorine, sulfur, nitrogen, and carbon revealed three possible inhibition paths, namely, (a) sulfidization of the copper catalyst to CuS, Cu2S, and CuSO4; (b) blocking the chlorination of carbon via the reaction of chlorine with N-containing compounds to generate ammonium chloride and other minor compounds; and (c) changing the carbon frame involved in attacking the carbon matrix by sulfur and nitrogen. Thus, thiourea plays a role as a sulfur and nitrogen donor to achieve multiple and synergistic inhibition of chlorinated aromatics. Our results suggest that other N/S-containing inhibitors function based on similar mechanisms.


Drying Technology | 2015

Emission of Particulate Matter 2.5 (PM2.5) from Sewage Sludge Incinerators in Japan

Kenji Shiota; Masaki Takaoka; Shuji Yamaguchi; Kazuyuki Oshita

Because fine particulate matter ≤2.5 µm in diameter (PM2.5) causes health problems, PM2.5 emissions are of concern. However, little research on stationary sources has been conducted. To determine the concentration and filtration behavior of PM2.5, dust was collected from five fluid-bed sewage sludge incinerators (SSIs) sorted by particle size using cascade impactors. The average PM2.5 concentration was 0.00014–4.8 mg/Nm3. The total estimated amount of PM2.5 emissions from the SSIs for all plants in Japan was 0.96–8.9 tons/year. Since the SSIs with dry Electrostatic Precipitators (EP) contributed 75–99% of the total emissions, replacing dry EPs with bag filters would significantly reduce the PM2.5 emissions from SSI.


Environmental Science & Technology | 2014

Contrasting Effects of Sulfur Dioxide on Cupric Oxide and Chloride during Thermochemical Formation of Chlorinated Aromatics

Takashi Fujimori; Yoshihiro Nishimoto; Kenji Shiota; Masaki Takaoka

Sulfur dioxide (SO2) gas has been reported to be an inhibitor of polychlorinated dibenzo-p-dioxins and furans (PCDD/Fs) formation in fly ash. However, other research has suggested little or no inhibitory effect of SO2 gas. Although these studies focused on reactions between SO2 gas and gas-phase chlorine (Cl) species, no attention was paid to thermochemical gas-solid reactions. In this study, we found contrasting effects of SO2 gas depending on the chemical form of copper (CuO vs CuCl2) with a solid-phase inorganic Cl source (KCl). Chlorinated aromatics (PCDD/Fs, polychlorinated biphenyls, and chlorobenzenes) increased and decreased in model fly ash containing CuO + KCl and CuCl2 + KCl, respectively, with increased SO2 injection. According to in situ Cu K-edge and S K-edge X-ray absorption spectroscopy, Cl gas and CuCl2 were generated and then promoted the formation of highly chlorinated aromatics after thermochemical reactions of SO2 gas with the solid-phase CuO + KCl system. In contrast, the decrease in aromatic-Cls in a CuCl2 + KCl system with SO2 gas was caused mainly by the partial sulfation of the Cu. The chemical form of Cu (especially the oxide/chloride ratio) may be a critical factor in controlling the formation of chlorinated aromatics using SO2 gas.


Journal of Hazardous Materials | 2018

Effect of lead speciation on its oral bioaccessibility in surface dust and soil of electronic-wastes recycling sites

Takashi Fujimori; Masaya Taniguchi; Tetsuro Agusa; Kenji Shiota; Masaki Takaoka; Aya Yoshida; Atsushi Terazono; Florencio C. Ballesteros; Hidetaka Takigami

We measured bioaccessible lead (Pb) in simulated gastrointestinal fluids containing Pb-contaminated soil or dust from electronic waste (e-waste) recycling sites to assess the risk of Pb ingestion. The physiologically based extraction test (PBET) was used as in vitro bioaccessibility assay. Pb speciation was determined using X-ray absorption spectroscopy. The total Pb concentrations in dusts (n=8) and soils (n=4) were in the range of 1630-131,000 and 239-7800mg/kg, respectively. Metallic Pb, a common component of e-waste, was ubiquitous in the samples. We also found Pb adsorbed onto goethite and as oxides and carbonate, implying soil mixing and weathering influences. Pb phosphate and organic species were only found in the soil samples, suggesting that formation was soil-specific. We identified other Pb compounds in several samples, including Pb silicate, Pb chromate, and Pb(II) hydrogen phosphate. A correlation analysis indicated that metallic Pb decreased bioaccessibility in the stomach, while a Pb speciation analysis revealed a low bioaccessibility for Pb phosphates and high bioaccessibility for organic Pb species. The health risk based on bioaccessible Pb was estimated to be much lower than that of total Pb due to the lower concentrations.


Forensic Science International | 2015

Forensic analysis of tire rubbers based on their sulfur chemical states

Atsushi Funatsuki; Kenji Shiota; Masaki Takaoka; Y. Tamenori

The chemical states of sulfur in 11 tires were analyzed using X-ray absorption near-edge structure (XANES) in order to discriminate between various tire rubbers. All tires had peaks around 2471.5 and 2480.5eV, and the shapes and heights of these peaks differed among tires, suggesting that the sulfur chemical state could be used for discrimination between tire rubbers. Based on t-tests on the results of XANES, 43 of 55 combinations were different at a significance level of 5%.


Journal of Physics: Conference Series | 2013

Characterization of lead, chromium, and cadmium in dust emitted from municipal solid waste incineration plants

Kenji Shiota; Genya Imai; Kazuyuki Oshita; Masaki Takaoka

The dust is emitted from municipal solid waste incinerators (MSWIs). Volatile toxic heavy metals are abundant in smaller dust particles and influence the toxicity of particulate matter such as fine particles <2.5 ?m (PM2.5). However, little is known about the properties of these metals in fine dust particles. Therefore, X-ray absorption fine structure (XAFS) spectroscopy was used to investigate the chemical states of lead (Pb), chromium (Cr), and cadmium (Cd) in MSWI dust collected for nine particle size fractions at the inlet of the dust collector and the stacks of two MSWI plants. XAFS spectroscopy of the dust in the inlet of the dust collectors showed that finer dust contained predominantly Pb as PbCl2 with some PbSiO3, coarser dust consisted of Cr forms, including more toxic Cr(VI) species, and all dust contained CdCl2. Although the dust collector removed almost all of the Pb, trace amounts of PbCl2 remained in the stack gas after passing through the dust collector.

Collaboration


Dive into the Kenji Shiota's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Yasuhiro Suzuki

National Research Institute of Police Science

View shared research outputs
Top Co-Authors

Avatar

Yohey Hashimoto

Tokyo University of Agriculture and Technology

View shared research outputs
Researchain Logo
Decentralizing Knowledge