Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Kenji Tanigaki is active.

Publication


Featured researches published by Kenji Tanigaki.


Nature Immunology | 2002

Notch–RBP-J signaling is involved in cell fate determination of marginal zone B cells

Kenji Tanigaki; Hua Han; Norio Yamamoto; Kei Tashiro; Masaya Ikegawa; Kazuki Kuroda; Akira Suzuki; Toru Nakano; Tasuku Honjo

RBP-J is a key mediator of Notch signaling that regulates cell fate determination in various lineages. To investigate the function of Notch–RBP-J in mature B cell differentiation, we generated mice that selectively lacked B cell RBP-J expression using conditional mutagenesis. Absence of RBP-J led to the loss of marginal zone B (MZB) cells with a concomitant increase in follicular B cells; in contrast, B1 cells in the peritoneal cavity were unaffected. Lack of RBP-J caused no defects in B cells maintenance, survival, plasma cell differentiation or activation. It is therefore likely that Notch–RBP-J signaling regulates the lineage commitment of mature B cells into follicular versus MZB cells. In addition, in mice with RBP-J–deficient B cells, had no obvious changes in immunoglobulin production in response to Ficoll, lipopolysaccharide or chicken gammaglobulin. In contrast, these mice exhibited increased mortality rates after blood-borne bacterial infection, which indicates that MZB cells play pivotal roles in the clearance of these bacteria.


Neuron | 2001

Notch1 and Notch3 Instructively Restrict bFGF-Responsive Multipotent Neural Progenitor Cells to an Astroglial Fate

Kenji Tanigaki; Fumiaki Nogaki; Jun Takahashi; Kei Tashiro; Hisanori Kurooka; Tasuku Honjo

Notch1 has been shown to induce glia in the peripheral nervous system. However, it has not been known whether Notch can direct commitment to glia from multipotent progenitors of the central nervous system. Here we present evidence that activated Notch1 and Notch3 promotes the differentiation of astroglia from the rat adult hippocampus-derived multipotent progenitors (AHPs). Quantitative clonal analysis indicates that the action of Notch is likely to be instructive. Transient activation of Notch can direct commitment of AHPs irreversibly to astroglia. Astroglial induction by Notch signaling was shown to be independent of STAT3, which is a key regulatory transcriptional factor when ciliary neurotrophic factor (CNTF) induces astroglia. These data suggest that Notch provides a CNTF-independent instructive signal of astroglia differentiation in CNS multipotent progenitor cells.


Nature Neuroscience | 2009

Forebrain ependymal cells are Notch-dependent and generate neuroblasts and astrocytes after stroke

Marie Carlén; Konstantinos Meletis; Christian Göritz; Vladimer Darsalia; Emma Evergren; Kenji Tanigaki; Mario Amendola; Fanie Barnabé-Heider; Maggie S.Y. Yeung; Luigi Naldini; Tasuku Honjo; Zaal Kokaia; Oleg Shupliakov; Robert Cassidy; Olle Lindvall; Jonas Frisén

Neurons are continuously generated from stem cells in discrete regions in the adult mammalian brain. We found that ependymal cells lining the lateral ventricles were quiescent and did not contribute to adult neurogenesis under normal conditions in mice but instead gave rise to neuroblasts and astrocytes in response to stroke. Ependymal cell quiescence was actively maintained by canonical Notch signaling. Inhibition of this pathway in uninjured animals allowed ependymal cells to enter the cell cycle and produce olfactory bulb neurons, whereas forced Notch signaling was sufficient to block the ependymal cell response to stroke. Ependymal cells were depleted by stroke and failed to self-renew sufficiently to maintain their own population. Thus, although ependymal cells act as primary cells in the neural lineage to produce neurons and glial cells after stroke, they do not fulfill defining criteria for stem cells under these conditions and instead serve as a reservoir that is recruited by injury.


Immunity | 2004

Regulation of αβ/γδ T Cell Lineage Commitment and Peripheral T Cell Responses by Notch/RBP-J Signaling

Kenji Tanigaki; Masayuki Tsuji; Norio Yamamoto; Hua Han; Jun Tsukada; Hiromasa Inoue; Masato Kubo; Tasuku Honjo

Abstract RBP-J is a key mediator of Notch signaling that regulates a large spectrum of cell fate determinations. To elucidate the functions of Notch signaling in T cell development, we inactivated RBP-J specifically at two stages of T cell development by crossing RBP-J floxed mice with lck-cre or CD4-cre transgenic mice. The loss of RBP-J at an earlier developmental stage resulted in enhanced generation and accelerated emigration of γδ T cells, whereas αβ T cell development was arrested at the double-negative 3 stage. The loss of RBP-J at a later stage did not affect the absolute number or the production rate of CD4 or CD8-positive mature T cells but enhanced Th1 cell response and reduced CD4 + T cell proliferation. Our data demonstrated that Notch/RBP-J signaling regulates γδ T cell generation and migration, αβ T cell maturation, terminal differentiation of CD4 + T cells into Th1/Th2 cells, and activation of T cells.


Immunity | 2003

Regulation of marginal zone B cell development by MINT, a suppressor of notch/RBP-J signaling pathway

Kazuki Kuroda; Hua Han; Shoichi Tani; Kenji Tanigaki; Tin Tun; Takahisa Furukawa; Yoshihito Taniguchi; Hisanori Kurooka; Yoshio Hamada; Shinya Toyokuni; Tasuku Honjo

We found that Msx2-interacting nuclear target protein (MINT) competed with the intracellular region of Notch for binding to a DNA binding protein RBP-J and suppressed the transactivation activity of Notch signaling. Although MINT null mutant mice were embryonic lethal, MINT-deficient splenic B cells differentiated about three times more efficiently into marginal zone B cells with a concomitant reduction of follicular B cells. MINT is expressed in a cell-specific manner: high in follicular B cells and low in marginal zone B cells. Since Notch signaling directs differentiation of marginal zone B lymphocytes and suppresses that of follicular B lymphocytes in mouse spleen, the results indicate that high levels of MINT negatively regulate Notch signaling and block differentiation of precursor B cells into marginal zone B cells. MINT may serve as a functional homolog of Drosophila Hairless.


Nature Immunology | 2007

Regulation of lymphocyte development by Notch signaling

Kenji Tanigaki; Tasuku Honjo

Notch molecules are well conserved from Drosophila melanogaster to mammals and regulate a broad spectrum of various cell lineage commitment processes. Recent studies using inhibitors, transgenic mice and conditional loss-of-function approaches have demonstrated essential roles for Notch signaling in the differentiation of thymocytes and peripheral T cells, as well as B cells. Here we highlight parallels in the developmental regulation of mammalian lymphocytes and the D. melanogaster nervous system through Notch cooperation with the transcriptional regulators RBP-J (Su(H)), MINT (Hairless) and E2A (Ac-Sc–Da).


Journal of Molecular Medicine | 2006

Inhibition of Notch/RBP-J signaling induces hair cell formation in neonate mouse cochleas

Norio Yamamoto; Kenji Tanigaki; Masayuki Tsuji; Daisuke Yabe; Juichi Ito; Tasuku Honjo

Mammalian inner ear hair cells in cochleas are believed to be incapable of regeneration after birth, which hampers treatment of sensorineural hearing impairment mainly caused by hair cell loss. Sensory epithelia of cochleas are composed of hair cells and supporting cells, both of which originate from common progenitors. Notch/RBP-J signaling is an evolutionally conserved pathway involved in specification of various cell types in developmental stage and even in some of postnatal mammalian organs. The specification of hair cell fate from the progenitors is inhibited by Notch/RBP-J signaling in embryonic inner ears. However, its function in postnatal inner ears is unknown. We showed that inhibition of Notch/RBP-J signaling, by either conditional disruption of the Rbpsuh gene or treatment with a γ-secretase inhibitor, could give rise to ectopic hair cells in the supporting cell region in organs of Corti from neonatal mouse cochleas where hair cells have not been considered to regenerate after birth. We also showed that down-regulation of Hes5 and up-regulation of Math1 were associated with ectopic hair cell induction. These results suggest that Notch/RBP-J signaling inhibits supporting cells from differentiation into hair cells even in postnatal days, implying that inhibitors of Notch/RBP-J signaling can be used to help regenerating hair cells after birth and thus serve for potential treatment of intractable sensorineural hearing impairment caused by hair cell loss without genetical manipulation.


Current Biology | 2003

Notch/RBP-J Signaling Regulates Epidermis/Hair Fate Determination of Hair Follicular Stem Cells

Norio Yamamoto; Kenji Tanigaki; Hua Han; Hiroshi Hiai; Tasuku Honjo

Notch signaling is involved in the cell fate determination of various cell lineages. Notch interaction with its ligand induces the cleavage of its intracellular domain (IC), and the Notch IC translocates to the nucleus and binds to RBP-J to transactivate transcription of target genes. All four Notches in mammals bind to RBP-J to exert their transactivation activities. Notch is expressed in developing or differentiating epidermis and hairs, inhibits the terminal differentiation of the epidermis, and regulates hair differentiation. The common stem cells that reside in the upper portion of hair follicles (the bulge) contribute to epidermal and hair cell formation. However, it is unknown what determines whether hair follicular stem cells will become hairs or epidermis. Here we report that conditionally disrupting the mouse RBP-J gene in a mosaic pattern to avoid embryonic lethality of RBP-J-deficiency caused hair loss, epidermal hyperkeratinization, and epidermal cyst formation. Cyst formation is probably due to a combination of the aberrant fate determination of RBP-J-deficient stem cells to epidermal progenitors and their accelerated differentiation into epidermis. These results suggest that Notch/RBP-J signaling regulates the cell fate determination of hair follicular stem cells at the bulge region.


Current Topics in Developmental Biology | 2010

Two Opposing Roles of RBP-J in Notch Signaling

Kenji Tanigaki; Tasuku Honjo

RBP-J/Su(H)/Lag1, the main transcriptional mediator of Notch signaling, binds DNA with the consensus sequence YRTGDGAD. Notch target genes can be controlled by two opposing activities of RBP-J. The interaction of the Notch intracellular domain with RBP-J induces a weak transcriptional activation and requires an additional tissue-specific transcriptional activator such as bHLH proteins or GATA to mediate strong target gene expression. For example, during Drosophila sensory organ precursor (SOP) cell development, proneural bHLH interacts with Da, a Drosophila orthologue of E2A, to form a tissue-specific activator of Su(H), the Drosophila orthologue of RBP-J. This complex and Su(H) act synergistically to promote the epidermal cell fate. In contrast, a complex of Su(H) with Hairless, a Drosophila functional homologue of MINT, has transcriptional repression activity that promotes SOP differentiation to neurons. Recent conditional loss-of-function studies demonstrated that transcriptional networks involving RBP-J, MINT, and E2A are conserved in mammalian cell differentiation, including multiple steps of lymphocyte development, and probably also in neuronal maturation in adult neurogenesis. During neurogenesis, Notch-RBP-J signaling was thought historically to be involved mainly in the maintenance of undifferentiated neural progenitors. However, the identification of a tissue-specific transcriptional activator of RBP-J-Notch has revealed new roles of RBP-J in the promotion of neuronal maturation. Finally, the Notch-independent function of RBP-J was recently discovered and will be reviewed here.


Molecular and Cellular Biology | 2006

RBP-Jκ-Dependent Notch Signaling Is Dispensable for Mouse Early Embryonic Development

Céline Souilhol; Sarah Cormier; Kenji Tanigaki; Charles Babinet; Michel Cohen-Tannoudji

ABSTRACT The Notch signaling pathway is an evolutionarily conserved signaling system which has been shown to be essential in cell fate specification and in numerous aspects of embryonic development in all metazoans thus far studied. We recently demonstrated that several components of the Notch signaling pathway, including the four Notch receptors and their five ligands known in mammals, are expressed in mouse oocytes, in mouse preimplantation embryos, or both. This suggested a possible implication of the Notch pathway in the first cell fate specification of the dividing mouse embryo, which results in the formation of the blastocyst. To address this issue directly, we generated zygotes in which both the maternal and the zygotic expression of Rbpsuh, a key element of the core Notch signaling pathway, were abrogated. We find that such zygotes give rise to blastocysts which implant and develop normally. Nevertheless, after gastrulation, these embryos die around midgestation, similarly to Rbpsuh-null mutants. This demonstrates that the RBP-Jκ-dependent pathway, otherwise called the canonical Notch pathway, is dispensable for blastocyst morphogenesis and the establishment of the three germ layers, ectoderm, endoderm, and mesoderm. These results are discussed in the light of recent observations which have challenged this conclusion.

Collaboration


Dive into the Kenji Tanigaki's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Hua Han

Fourth Military Medical University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Kei Tashiro

Kyoto Prefectural University of Medicine

View shared research outputs
Researchain Logo
Decentralizing Knowledge