Kenlin Chang
Guangdong University of Technology
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Kenlin Chang.
Bioresource Technology | 2016
Limao Huang; Jingyong Liu; Yao He; Shuiyu Sun; Jiacong Chen; Jian Sun; Kenlin Chang; Jiahong Kuo; Xun’an Ning
Thermodynamics and kinetics of sewage sludge (SS) and water hyacinth (WH) co-combustion as a blend fuel (SW) for bioenergy production were studied through thermogravimetric analysis. In CO2/O2 atmosphere, the combustion performance of SS added with 10-40wt.% WH was improved 1-1.97 times as revealed by the comprehensive combustion characteristic index (CCI). The conversion of SW in different atmospheres was identified and their thermodynamic parameters (ΔH,ΔS,ΔG) were obtained. As the oxygen concentration increased from 20% to 70%, the ignition temperature of SW decreased from 243.1°C to 240.3°C, and the maximum weight loss rate and CCI increased from 5.70%·min(-1) to 7.26%·min(-1) and from 4.913%(2)·K(-3)·min(-2) to 6.327%(2)·K(-3)·min(-2), respectively, which corresponded to the variation in ΔS and ΔG. The lowest activation energy (Ea) of SW was obtained in CO2/O2=7/3 atmosphere.
Bioresource Technology | 2017
Jiacong Chen; Jingyong Liu; Yao He; Limao Huang; Shuiyu Sun; Jian Sun; Kenlin Chang; Jiahong Kuo; Shaosong Huang; Xun-an Ning
Artificial neural network (ANN) modeling was applied to thermal data obtained by non-isothermal thermogravimetric analysis (TGA) from room temperature to 1000°C at three different heating rates in air to predict the TG curves of sewage sludge (SS) and coffee grounds (CG) mixtures. A good agreement between experimental and predicted data verified the accuracy of the ANN approach. The results of co-combustion showed that there were interactions between SS and CG, and the impacts were mostly positive. With the addition of CG, the mass loss rate and the reactivity of SS were increased while charring was reduced. Measured activation energies (Ea) determined by the Kissinger-Akahira-Sunose (KAS) and Ozawa-Flynn-Wall (OFW) methods deviated by <5%. The average value of Ea (166.8kJ/mol by KAS and 168.8kJ/mol by OFW, respectively) was the lowest when the fraction of CG in the mixture was 40%.
Chemosphere | 2015
Xun-an Ning; Jieying Liang; Ruijing Li; Zhen Hong; Yujie Wang; Kenlin Chang; Yaping Zhang; Zuoyi Yang
Aromatic amines (AAs), which are components of synthetic dyes, are recalcitrant to the wastewater treatment process and can accumulate in sludge produced by textile-dyeing, which may pose a threat to the environment. A comprehensive investigation of 10 textile-dyeing plants was undertaken in Guangdong Province in China. The contents and component distributions of AAs were evaluated in this study, and a risk assessment was performed. The total concentrations of 14 AAs (Σ14 AAs) varied from 11 μg g(-1)dw to 82.5 μg g(-1)dw, with a mean value of 25 μg g(-1)dw. The component distributions of AAs were characterized by monocyclic anilines, of which 2-methoxy-5-methylaniline and 5-nitro-o-toluidine were the most dominant components. The risk quotient (RQ) value was used to numerically evaluate the ecological risk of 14 AAs in the environment. The result showed that the 14 AAs contents in textile-dyeing sludge may pose a high risk to the soil ecosystem after being discarded on soil or in a landfill.
Journal of Hazardous Materials | 2016
Qiannan Sun; Yen-Ping Peng; Hanlin Chen; Kenlin Chang; Yang-Neng Qiu; Shiau-Wu Lai
A p-n junction based Cu2O-doped TiO2 nanotube arrays (Cu2O-TNAs) were synthesized and used as a working anode in a photoelectrochemical (PEC) system. The results revealed that the Cu2O-TNAs were dominated by the anatase phase and responded significantly to visible light. XPS analyses indicated that with an amount of 24.79% Cu doping into the structure, the band gap of Cu2O-TNAs was greatly reduced. SEM images revealed that the supported TiO2 nanotubes had diameters of approximately 80nm and lengths of about 2.63μm. Upon doping with Cu2O, the TiO2 nanotubes maintained their structural integrity, exhibiting no significant morphological change, favoring PEC applications. Under illumination, the photocurrent from Cu2O/TNAs was 2.4 times larger than that from TNAs, implying that doping with Cu2O significantly improved electron mobility by reducing the rate of recombination of electron-hole pairs. The EIS and Bode plot revealed that the estimated electron lifetimes, τel, of TNAs and Cu2O/TNAs were 6.91 and 26.26ms, respectively. The efficiencies of degradation of Ibuprofen by photoelectrochemical, photocatalytic (PC), electrochemical (EC) and photolytic (P) methods were measured.
Bioresource Technology | 2018
Limao Huang; Candie Xie; Jingyong Liu; Xiaochun Zhang; Kenlin Chang; Jiahong Kuo; Jian Sun; Wuming Xie; Li Zheng; Shuiyu Sun; Musa Buyukada; Fatih Evrendilek
Effects of the three metal carbonates (K2CO3, Na2CO3, and MgCO3) were quantified on catalytic co-combustion of the sewage sludge and water hyacinth (SW) blend using a thermogravimetric-mass spectrometric (TG-MS) analysis and kinetics modeling. The main dominating steps of the catalysts were the organic volatile matter release and combustion stage. Weighted mean values of activation energy (Em) were estimated at 181.18KJ·mol-1, 199.76KJ·mol-1, 138.76KJ·mol-1, and 177.88KJ·mol-1 for SW, SW+5% K2CO3, SW+5% Na2CO3, and SW+5% MgCO3, respectively. The lowest Em occurred with SW+5% Na2CO3. Overall, catalyst effect on co-combustion appeared to be negligible as indicated by Gibbs free energy (ΔG). The normalized intensities of SW+MgCO3 were strongest. The addition of Na2CO3 and MgCO3 to SW increased flue gases emissions (CO2, NO2, SO2, HCN, and NH3) of SW, whereas the addition of K2CO3 to SW reduced flue gases emissions from the entire combustion process.
Chemosphere | 2016
Kenlin Chang; Qiannan Sun; Yen-Ping Peng; Shiau-Wu Lai; Menghau Sung; Chi-Yu Huang; Hsion-Wen Kuo; Jian Sun; Yi-Ching Lin
A p-n junction Cu2O doped TiO2 nanotube arrays (Cu2O/TNAs) were synthesized by square wave voltammetry electrochemical (SWVE) deposition method and employed as the working anode. The crystalline, optical properties, surface morphology, and structure of the Cu2O/TNAs were characterized by XRD, UV-vis absorbance edges, SEM, and XPS. Results showed that the Cu2O/TNAs were dominated by anatase phase after sintering at 450 °C with significant visible light response. XPS finding confirmed XRD results that the copper element in Cu2O/TNAs was Cu (I) instead of Cu (II). SEM images illustrated the diameter and the length of supported TiO2 nanotubes was approximately 100 nm and 2.75-4.34 μm, respectively. After Cu2O doping, the nano-tubular structure of TiO2 nanotube kept its integrity with no significant morphological change, which was beneficial for PEC applications. The photocurrent of Cu2O/TNAs was 1.45 times larger than that of TNAs, implying that Cu2O doping significantly enhanced electron mobility by reducing the recombination of electron-hole pairs. In addition, electrochemical impedance spectroscopy (EIS) measurements revealed that the recombination of photogenerated electron-hole pairs was inhibited as the bias potential was applied. Results of Bode plot further demonstrated that the electron lifetime τel of Cu2O/TNAs-20 (30.79 ms), under 0.5 V bias potential, was about 2.23 times higher than that of pure TNAs (13.82 ms). Results of electron spin resonance (ESR) analyses demonstrate that the hydroxyl radicals (OH) are responsible for the PEC decomposition of Ibuprofen.
Bioresource Technology | 2017
Jian Sun; Bihai Cai; Wenjing Xu; Yu Huang; Yaping Zhang; Yen-Ping Peng; Kenlin Chang; Jiahong Kuo; Ku-Fan Chen; Xun-an Ning; Guoguang Liu; Yujie Wang; Zuoyi Yang; Jingyong Liu
A novel anthraquinone-2,6-disulfonate/MnOx-doped polypyrrole film (AQDS/Mn/PPy) electrode was prepared by one-step electropolymerization method and was used to improve performance of a reversible photo-bioelectrochemical cell (RPBEC). The RPBEC was operated in polarity reversion depended on dark/light reaction of alga Chlorella vulgaris by which sequential decolorization of azo dye and mineralization of decolorization products coupled with bioelectricity generation can be achieved. The results showed that formation of uniform AQDS/Mn/PPy film significantly enhanced electroactive surface area and electrocatalytic activity of carbon electrode. The RPBEC with AQDS/Mn/PPy electrodes demonstrated 77% increases in maximum power and 73% increases in Congo red decolorization rate before polarity reversion, and 198% increases in maximum power and 138% increases in decolorization products mineralization rate after polarity reversion, respectively, compared to the RPBEC with bare electrode. This was resulted from simultaneous dynamics improvement in half-reaction rate of anode and photo-biocathode due to enhanced electron transfer and algal-bacterial biofilm formation.
Environmental Technology | 2017
Kenlin Chang; Xi-Mei Chen; Jian Sun; Jingyong Liu; Shuiyu Sun; Zuoyi Yang; Yin Wang
ABSTRACT Spent mushroom substrate (SMS) is a bulky waste byproduct of commercial mushroom production, which can cause serious environmental problems and, therefore, poses a significant barrier to future expansion of the mushroom industry. In the present study, we explored the use of SMS as a biochar to improve the quality of bio-fertilizer. Specifically, we performed a series of experiments using composting reactors to investigate the effects of SMS biochar on the physio-chemical properties of bio-fertilizer. Biochar was derived from dry SMS pyrolysed at 500°C and mixed with pig manure and rice straw. Results from this study demonstrate that the addition of biochar significantly reduced electrical conductivity and loss of organic matter in compost material. Nutrient analysis revealed that the SMS-derived biochar is rich in fertilizer nutrients such as P, K, Na, and N. All of these findings suggest that SMS biochar could be an excellent medium for compost.
BioMed Research International | 2017
Zuoyi Yang; Junhui Zhou; Yanbin Xu; Yaping Zhang; Haien Luo; Kenlin Chang; Yujie Wang
Indole and its derivatives are typical nitrogen heterocyclic compounds and have been of immense concern since they are known for the risk of their toxic, recalcitrant, and carcinogenic properties for human and ecological environment. In this study, a Gram-negative bacterial strain of eliminating indole was isolated from a coking wastewater. The strain was confirmed as Acinetobacter pittii L1 based on the physiological and biochemical characterization and 16S ribosomal DNA (rDNA) gene sequence homology. 400 mg/L indole could be completely removed within 48 h by the strain on the optimum condition of 37°C, pH 7.4, and 150 rpm. The organic nitrogen was converted to NH3-N and then to NO3− and the organic carbon was partially transferred to CO2 during the indole biodegradation. The metabolic pathways were proposed to explain the indole degradation based on the liquid chromatography tandem mass spectrometry (LC-MS/MS) analysis of indigo, 4-(3-Hydroxy-1H-pyrrol-2-yl)-2-oxo-but-3-enoic acid, and isatin. The toxicity of the biodegradation products was evaluated using the Microtox test, which revealed that the metabolites were more toxic than indole. Our research holds promise for the potential application of Acinetobacter pittii L1 for NHCs degradation, production of indigoids, and soil remediation as well as treatment of indole containing wastewater.
Waste Management | 2018
Jingyong Liu; Limao Huang; Guang Sun; Jiacong Chen; Shengwei Zhuang; Kenlin Chang; Wuming Xie; Jiahong Kuo; Yao He; Shuiyu Sun; Musa Buyukada; Fatih Evrendilek
Additives and biomass were co-combusted with sewage sludge (SS) to promote SS incineration treatment and energy generation. (Co-)combustion characteristics of sewage sludge (SS), water hyacinth (WH), and 5% five additives (K2CO3, Na2CO3, Mg2CO3, MgO and Al2O3) were quantified and compared using thermogravimetric-mass spectrometric (TG-MS) and numerical analyses. The combustion performance of SS declined slightly with the additives which was demonstrated by the 0.03-to-0.25-fold decreases in comprehensive combustibility index (CCI). The co-combustion performed well given the 0.31-fold increase in CCI. Kinetic parameters were estimated using the Ozawa-Flynn-Wall (OFW) and Kissinger-Akahira-Sunose (KAS) methods. Apparent activation energy estimates by OFW and KAS were consistent. The addition of K2CO3 and MgCO3 decreased the weighted average activation energy of SS. Adding K2CO3 to the blend reduced CO2, NO2, SO2, HCN and NH3 emissions. CO2, NO2 and SO2 emissions were higher from WH than SS. Adding WH or K2CO3 to SS increased CO2, NO2 and SO2 but HCN and NH3 emissions. Based on both catalytic effects and evolved gases, K2CO3 was potentially an optimal option for the catalytic combustion among the tested additives.