Kenneth B. Adler
North Carolina State University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Kenneth B. Adler.
The New England Journal of Medicine | 2011
Max A. Seibold; Anastasia L. Wise; Marcy C. Speer; Mark P. Steele; Kevin K. Brown; James E. Loyd; Tasha E. Fingerlin; Weiming Zhang; Gunnar Gudmundsson; Steve D. Groshong; Christopher M. Evans; Stavros Garantziotis; Kenneth B. Adler; Burton F. Dickey; Roland M. du Bois; Ivana V. Yang; Aretha Herron; Dolly Kervitsky; Janet Talbert; Cheryl Markin; Joungjoa Park; Anne L. Crews; Susan Slifer; Scott S. Auerbach; Michelle G. Roy; Jia Lin; Corinne E. Hennessy; Marvin I. Schwarz; David A. Schwartz
BACKGROUND The mutations that have been implicated in pulmonary fibrosis account for only a small proportion of the population risk. METHODS Using a genomewide linkage scan, we detected linkage between idiopathic interstitial pneumonia and a 3.4-Mb region of chromosome 11p15 in 82 families. We then evaluated genetic variation in this region in gel-forming mucin genes expressed in the lung among 83 subjects with familial interstitial pneumonia, 492 subjects with idiopathic pulmonary fibrosis, and 322 controls. MUC5B expression was assessed in lung tissue. RESULTS Linkage and fine mapping were used to identify a region of interest on the p-terminus of chromosome 11 that included gel-forming mucin genes. The minor-allele of the single-nucleotide polymorphism (SNP) rs35705950, located 3 kb upstream of the MUC5B transcription start site, was present at a frequency of 34% among subjects with familial interstitial pneumonia, 38% among subjects with idiopathic pulmonary fibrosis, and 9% among controls (allelic association with familial interstitial pneumonia, P=1.2×10(-15); allelic association with idiopathic pulmonary fibrosis, P=2.5×10(-37)). The odds ratios for disease among subjects who were heterozygous and those who were homozygous for the minor allele of this SNP were 6.8 (95% confidence interval [CI], 3.9 to 12.0) and 20.8 (95% CI, 3.8 to 113.7), respectively, for familial interstitial pneumonia and 9.0 (95% CI, 6.2 to 13.1) and 21.8 (95% CI, 5.1 to 93.5), respectively, for idiopathic pulmonary fibrosis. MUC5B expression in the lung was 14.1 times as high in subjects who had idiopathic pulmonary fibrosis as in those who did not (P<0.001). The variant allele of rs35705950 was associated with up-regulation in MUC5B expression in the lung in unaffected subjects (expression was 37.4 times as high as in unaffected subjects homozygous for the wild-type allele, P<0.001). MUC5B protein was expressed in lesions of idiopathic pulmonary fibrosis. CONCLUSIONS A common polymorphism in the promoter of MUC5B is associated with familial interstitial pneumonia and idiopathic pulmonary fibrosis. Our findings suggest that dysregulated MUC5B expression in the lung may be involved in the pathogenesis of pulmonary fibrosis. (Funded by the National Heart, Lung, and Blood Institute and others.).
In Vitro Cellular & Developmental Biology – Plant | 1988
Michael J. Whitcutt; Kenneth B. Adler; Reen Wu
SummaryA simple, disposable, biphasic cultivation chamber has been developed for respiratory tract epithelial cells. This chamber, the Whicutt chamber, contains a movable, transparent, permeable gelatin membrane that can be employed either submerged in the culture medium, thereby feeding the cells by the traditional immersion method, or raised to the surface of the culture medium, to bring the apical surfaces of the cells into contact with air and provide nutrients only from below (basal feeding). The effects of biphasic cultivation on the growth and differentiation of respiratory tract epithelial cells from different sources have been studied in Whitcutt chambers. Primary hamster tracheal epithelial (HTE) cells grown to confluence with basal feeding developed a ciliated columnar morphology, with differentiated features (cilia and mucous granules) located in the apical region of the epithelial layer. These cells secreted mucinlike molecules from the apical surface (i.e. the surface in contact with air). Although the apical localization of differentiation features was greater, mucous cell differentiation achieved by basal feeding was quantitatively not greater than that achieved by continuous immersion feeding. Similarly, basal feeding did not alter the degree of epithelial cell differentiation in cultures derived from rat, rabbit, and monkey tracheas or from human bronchial and nasal tissues. In contrast, the differentiation of guinea pig tracheal epithelial cells in culture was significantly influenced by the feeding method employed. When fed basally, guinea pig tracheal epithelial cell cultures expressed various mucociliary functions with resemblance to mucociliary layers in vivo, whereas constantly immersed cultures seemed stratified and squamous. These results suggest that, at least for guinea pigs, the combination of feeding methods provided by the Whitcutt chamber can be used to achieve differentiated cultures of tracheal epithelial cells with a polarity of differentiation that is similar to that observed in intact airways in vivo.
Nature Medicine | 2004
Monique Singer; Linda D. Martin; B. Boris Vargaftig; Joungjoa Park; Achim D Gruber; Yuehua Li; Kenneth B. Adler
Mucus hypersecretion is a crucial feature of pulmonary diseases such as asthma, chronic bronchitis and cystic fibrosis. Despite much research, there is still no effective therapy for this condition. Recently, we showed that the myristoylated, alanine-rich C-kinase substrate (MARCKS) protein is required for mucus secretion by human bronchial epithelial cells in culture. Having synthesized a peptide corresponding to the N-terminal domain of MARCKS, we now show that the intratracheal instillation of this peptide blocks mucus hypersecretion in a mouse model of asthma. A missense peptide with the same amino acid composition has no effect. Based on quantitative histochemical analysis of the mouse airways, the peptide seems to act by blocking mucus release from goblet cells, possibly by inhibiting the attachment of MARCKS to membranes of intracellular mucin granules. These results support a pivotal role for MARCKS protein, specifically its N-terminal region, in modulating this secretory process in mammalian airways. Intratracheal administration of this MARCKS-related peptide could therapeutically reduce mucus secretion in the airways of human patients with asthma, chronic bronchitis and cystic fibrosis.
European Respiratory Journal | 1997
Linda D. Martin; Lori G. Rochelle; Bernard M. Fischer; Thomas M. Krunkosky; Kenneth B. Adler
Deleterious environmental stimuli cause the airway epithelium to respond with increased secretions of mucus, reaction of oxygen/nitrogen species, changes in ciliary beating, and the influx of inflammatory cells. The epithelium is a target for factors released by infiltrating inflammatory cells, and has recently been shown to serve as an effector of such inflammation. Molecular mechanisms regulating production of secondary inflammatory mediators (cytokines, lipid mediators, and reactive oxygen/nitrogen species) have yet to be fully described. This report reviews the production of secondary mediators by epithelial cells and by airway epithelium. Lipid mediators are enzymatically produced by the airway epithelium in response to primary mediators. Molecular mechanisms regulating the production of cyclo-oxygenase, lipoxygenase and prostaglandin synthase are discussed, along with the potential of lipid mediators to produce inflammation. The molecular regulation of nitric oxide production is also described in the context of its role as a signalling molecule in pathways regulating secretion of mucus, ciliary motion, and intercellular adhesion molecule-1 (ICAM-1) expression. The production of cytokines by the airway epithelium is shown to play a role in causing inflammation associated with respiratory diseases. Particular attention is paid to molecular mechanisms governing the expression of tumour necrosis factor-alpha (TNF-alpha), interleukin-6 (IL-6), and interleukin-8 (IL-8).
In Vitro Cellular & Developmental Biology – Animal | 1993
Liisa Kaartinen; Paul Nettesheim; Kenneth B. Adler; Scott H. Randell
SummaryIn vitro culture conditions enabling rat tracheal epithelial (RTE) cells to differentiate to mucociliary, mucous, or squamous phenotypes are described. Medium composition for rapid cell growth to confluence in membrane insert cultures was determined, and the effects of major modifiers of differentiation were tested. Retinoic acid (RA), collagen gel substratum, and an air-liquid interface at the level of the cell layer were required for expression of a mucociliary phenotype which most closely approximated the morphology of the tracheal epithelium in vivo. Large quantities of high molecular weight, hyaluronidase-resistant glycoconjugates, most likely mucin glycoproteins, were produced in the presence of RA when the cells were grown with or without a collagen gel and in submerged as well as in interface cultures. However, extensive ciliagenesis was dependent on the simultaneous presence of RA, collagen gel, and an air-liquid interface. When RA was omitted from the media, the cells became stratified squamous and developed a cornified apical layer in air-liquid interface cultures. This phenotype was accompanied by loss of transglutaminase (TGase) type II and keratin 18 and expression of the squamous markers TGase type I and keratin 13. The ability to modulate RTE cell phenotypes in culture will facilitate future studies investigating molecular regulation of tracheal cell proliferation, differentiation, and function.In vitro culture conditions enabling rat tracheal epithelial (RTE) cells to differentiate to mucociliary, mucous, or squamous phenotypes are described. Medium composition for rapid cell growth to confluence in membrane insert cultures was determined, and the effects of major modifiers of differentiation were tested. Retinoic acid (RA), collagen gel substratum, and an air-liquid interface at the level of the cell layer were required for expression of a mucociliary phenotype which most closely approximated the morphology of the tracheal epithelium in vivo. Large quantities of high molecular weight, hyaluronidase-resistant glycoconjugates, most likely mucin glycoproteins, were produced in the presence of RA when the cells were grown with or without a collagen gel and in submerged as well as in interface cultures. However, extensive ciliagenesis was dependent on the simultaneous presence of RA, collagen gel, and an air-liquid interface. When RA was omitted from the media, the cells became stratified squamous and developed a cornified apical layer in air-liquid interface cultures. This phenotype was accompanied by loss of transglutaminase (TGase) type II and keratin 18 and expression of the squamous markers TGase type I and keratin 13. The ability to modulate RTE cell phenotypes in culture will facilitate future studies investigating molecular regulation of tracheal cell proliferation, differentiation, and function.
Free Radical Biology and Medicine | 1998
Lori G. Rochelle; Bernard M. Fischer; Kenneth B. Adler
Intracellularly generated reactive species of both oxygen (ROS) and nitrogen (RNS) have been implicated in signaling responses in airway epithelial cells, but these radicals have not been measured directly in such cells. In this study, intracellular production of both ROS and RNS were measured in the same cell lysates of guinea pig tracheal epithelial (GPTE) cells maintained in primary culture. ROS and RNS were quantified under basal (constitutive) conditions and in response to different stimuli: LPS and TNFalpha [activators of inducible nitric oxide synthase (iNOS)]; several activators of calcium-dependent cNOS (ATP, bradykinin, ionophore A23187, and thapsigargin); and exogenous oxidant stress generated by addition of xanthine oxidase to purine (p + XO). Studies with LPS and TNFalpha also were performed using the murine macrophage cell line, RAW 264.7, as a positive control. Intracellular oxidant production was detected from oxidation of dihydrorhodamine to rhodamine. NOx was quantified by either chemiluminescent or fluorescent detection. NOS activity was measured as citrulline production from arginine. Basal production of oxidants by GPTE cells (0.08 + 0.00 nmol rhodamine) was less than 10% that of RAW.267 cells (0.91 + 0.03 nmol rhodamine). TNFalpha and LPS significantly increased intracellular oxidant production in GPTE cells, as did p + XO, but none of the cNOS activators affected production of oxidants in these cells. Concentrations of NO2 after 4 h in unstimulated RAW 264.7 and GPTE cells were similar and comprised 63% of total NOx in GPTE and 62% in RAW cells. TNFalpha and LPS both increased NO2 in GPTE cells, but none of the Ca++-mobilizing agents nor p + XO significantly affected intracellular RNS. The results suggest both ROS and RNS can be measured in the same lysates from airway epithelial cells, and that both ROS and RNS are produced in these cells in response to different stimuli.
American Journal of Physiology-lung Cellular and Molecular Physiology | 1999
Janice A. Dye; Kenneth B. Adler; Judy H. Richards; Kevin L. Dreher
Particulate matter (PM) metal content and bioavailability have been hypothesized to play a role in the health effects epidemiologically associated with PM exposure, in particular that associated with emission source PM. Using rat tracheal epithelial cells in primary culture, the present study compared and contrasted the acute airway epithelial effects of an emission source particle, residual oil fly ash (ROFA), with that of its principal constitutive transition metals, namely iron, nickel, and vanadium. Over a 24-h period, exposure to ROFA, vanadium, or nickel plus vanadium, but not to iron or nickel, resulted in increased epithelial permeability, decreased cellular glutathione, cell detachment, and lytic cell injury. Treatment of vanadium-exposed cells with buthionine sulfoximine further increased cytotoxicity. Conversely, treatment with the radical scavenger dimethylthiourea inhibited the effects in a dose-dependent manner. RT-PCR analysis of RNA isolated from ROFA-exposed rat tracheal epithelial cells demonstrated significant macrophage inflammatory protein-2 and interleukin-6 gene expression as early as 6 h after exposure, whereas gene expression of inducible nitric oxide synthase was maximally increased 24 h postexposure. Again, vanadium (not nickel) appeared to be mediating the effects of ROFA on gene expression. Treatment with dimethylthiourea inhibited both ROFA- and vanadium-induced gene expression in a dose-dependent manner. Corresponding effects were observed in interleukin-6 and macrophage inflammatory protein-2 synthesis. In summary, generation of an oxidative stress was critical to induction of the ROFA- or vanadium-induced effects on airway epithelial gene expression, cytokine production, and cytotoxicity.Particulate matter (PM) metal content and bioavailability have been hypothesized to play a role in the health effects epidemiologically associated with PM exposure, in particular that associated with emission source PM. Using rat tracheal epithelial cells in primary culture, the present study compared and contrasted the acute airway epithelial effects of an emission source particle, residual oil fly ash (ROFA), with that of its principal constitutive transition metals, namely iron, nickel, and vanadium. Over a 24-h period, exposure to ROFA, vanadium, or nickel plus vanadium, but not to iron or nickel, resulted in increased epithelial permeability, decreased cellular glutathione, cell detachment, and lytic cell injury. Treatment of vanadium-exposed cells with buthionine sulfoximine further increased cytotoxicity. Conversely, treatment with the radical scavenger dimethylthiourea inhibited the effects in a dose-dependent manner. RT-PCR analysis of RNA isolated from ROFA-exposed rat tracheal epithelial cells demonstrated significant macrophage inflammatory protein-2 and interleukin-6 gene expression as early as 6 h after exposure, whereas gene expression of inducible nitric oxide synthase was maximally increased 24 h postexposure. Again, vanadium (not nickel) appeared to be mediating the effects of ROFA on gene expression. Treatment with dimethylthiourea inhibited both ROFA- and vanadium-induced gene expression in a dose-dependent manner. Corresponding effects were observed in interleukin-6 and macrophage inflammatory protein-2 synthesis. In summary, generation of an oxidative stress was critical to induction of the ROFA- or vanadium-induced effects on airway epithelial gene expression, cytokine production, and cytotoxicity.
Laboratory Investigation | 1990
Kenneth B. Adler; Robert B. Low; Kevin O. Leslie; John Mitchell; John N. Evans
Interstitial pulmonary fibrosis represents a group of fibrosing lung diseases, often of unknown etiology, characterized by hypercellularity and deposition of connective tissue within the interstitium of the alveolar wall (32, 65). Increased “stiffness” of the lung leads to reduced lung volumes and lowered dynamic compliance (80). In interstitial fibrosis, as well as several other forms of lung injury, there is an apparent increase in smooth muscle (SM) cells organized into bundles within areas of the lung where these cells normally are present but difficult to detect, such as the alveolar duct (69, 89, 119). This increase in acinar SM can be quite prominent, and, in some cases, the degree of parenchymal SM hyperplasia is sufficiently excessive to be referred to as “muscular cirrhosis of the lung” (2, 7, 33, 110, 152).
American Journal of Pathology | 2005
Jin-Ah Park; Fang He; Linda D. Martin; Yuehua Li; Brian N. Chorley; Kenneth B. Adler
The presence of mucus obstruction and neutrophil-predominant inflammation in several lung disorders, such as cystic fibrosis, suggests a relationship between neutrophils and excess mucus production. Mechanisms of human neutrophil elastase (HNE)-induced mucin secretion by well-differentiated normal human bronchial epithelial (NHBE) cells maintained in air/liquid interface culture were investigated. HNE increased mucin secretion in a concentration-dependent manner, with maximal stimulation (more than twofold) occurring within a short (15 minutes) time period. Mucins MUC 5 AC and MUC 5 B, but not MUC 2, were released in response to HNE. Stimulation of mucin secretion required partial elastase enzymatic activity and did not appear to involve a soluble product released by the cells. HNE-stimulated secretion involved activation of protein kinase C (PKC), as HNE exposure rapidly provoked PKC enzymatic activity that was attenuated by the general PKC inhibitors calphostin C and bisindoylmaleimide I. Of the different isoforms, PKCalpha, delta, zeta, lambda, iota, and epsilon were constitutively expressed in NHBE cells while PKCbeta, eta, and mu were PMA-inducible. PKCdelta was the only isoform to translocate from cytoplasm to membrane in response to HNE. Inhibition of PKCdelta attenuated HNE-mediated mucin secretion. The results suggest HNE stimulation of mucin release by human airway epithelial cells involves intracellular activation of PKC, specifically the delta isoform.
European Respiratory Journal | 2008
Monica Kraft; Kenneth B. Adler; Jennifer L. Ingram; Anne L. Crews; T. P. Atkinson; Charles B. Cairns; D. C. Krause; Hong Wei Chu
As excess mucin expression can contribute to the exacerbation of asthma, the present authors hypothesised that Mycoplasma pneumoniae significantly induces MUC5AC (the major airway mucin) expression in airway epithelial cells isolated directly from asthmatic subjects. A total of 11 subjects with asthma and six normal controls underwent bronchoscopy with airway brushing. Epithelial cells were cultured at an air–liquid interface and incubated with and without M. pneumoniae for 48 h, and in the presence and absence of nuclear factor (NF)-κB and a toll-like receptor (TLR)2 inhibitor. Quantitative PCR was performed for MUC5AC and TLR2 mRNA. MUC5AC protein and total protein were determined by ELISA. M. pneumoniae exposure significantly increased MUC5AC mRNA and protein expression after 48 h in epithelial cells isolated from asthmatic, but not from normal control subjects, at all concentrations as compared to unexposed cells. TLR2 mRNA expression was significantly increased in asthmatic epithelial cells at 4 h compared with unexposed cells. NF-κB and TLR2 inhibition reduced MUC5AC expression to the level of the unexposed control in both groups. Mycoplasma pneumoniae exposure significantly increased MUC5AC mRNA and protein expression preferentially in airway epithelial cells isolated from asthmatic subjects. The toll-like receptor 2 pathway may be involved in this process.