Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Kenneth D. Philipson is active.

Publication


Featured researches published by Kenneth D. Philipson.


Science | 1990

Molecular cloning and functional expression of the cardiac sarcolemmal Na(+)-Ca2+ exchanger

Da Nicoll; S Longoni; Kenneth D. Philipson

The Na(+)-Ca2+ exchanger of the cardiac sarcolemma can rapidly transport Ca2+ during excitation-contraction coupling. To begin molecular studies of this transporter, polyclonal antibodies were used to identify a complementary DNA (cDNA) clone encoding the Na(+)-Ca2+ exchanger protein. The cDNA hybridizes with a 7-kilobase RNA on a Northern blot and has an open reading frame of 970 amino acids. Hydropathy analysis suggests that the protein has multiple transmembrane helices, and a small region of the sequence is similar to that of the Na(+)- and K(+)-dependent adenosine triphosphatase. Polyclonal antibodies to a synthetic peptide from the deduced amino acid sequence react with sarcolemmal proteins of 70, 120, and 160 kilodaltons on immunoblots. RNA, synthesized from the cDNA clone, induces expression of Na(+)-Ca2+ exchange activity when injected into Xenopus oocytes.


Journal of Biological Chemistry | 1996

Cloning of a Third Mammalian Na+-Ca2+ Exchanger, NCX3

Debora A. Nicoll; Beate D. Quednau; Zhiyong Qui; Yu-Rong Xia; Aldons J. Lusis; Kenneth D. Philipson

NCX3 is the third isoform of a mammalian Na+-Ca2+ exchanger to be cloned. NCX3 was identified from rat brain cDNA by polymerase chain reaction (PCR) using degenerate primers derived from the sequences of two conserved regions of NCX1 and NCX2. The NCX3 PCR product was used to isolate two overlapping clones totalling 4.8 kilobases (kb) from a rat brain cDNA library. The overlapping clones were sequenced and joined at a unique Bsp106I restriction enzyme site to form a full-length cDNA clone. The NCX3 cDNA clone has an open reading frame of 2.8 kb encoding a protein of 927 amino acids. At the amino acid level, NCX3 shares 73% identity with NCX1 and 75% identity with NCX2 and is predicted to share the same membrane topology as NCX1 and NCX2. Following addition of a poly(A)+ tail to the NCX3 clone, exchanger activity could be expressed in Xenopus oocytes. NCX3 was also expressed in the mammalian BHK cell line. NCX3 transcripts are 6 kb in size and are highly restricted to brain and skeletal muscle. Linkage analysis in the mouse indicated that the NCX family of genes is dispersed, since the NCX1, NCX2, and NCX3 genes mapped to mouse chromosomes 17, 7, and 12, respectively.


Circulation Research | 1982

Effects of pH on Na+-Ca2+ exchange in canine cardiac sarcolemmal vesicles.

Kenneth D. Philipson; M M Bersohn; A Y Nishimoto

Using highly purified sarcolemmal vesicles isolated from dog ventricles, we examined the effects of pH on Na+-Ca2+ exchange. The initial rate of Nai+-dependent Ca2+ uptake is a sigmoid function of pH. The Ca2+ uptake is inhibited at pH 6 and stimulated at pH 9 (as compared with uptake at pH 7.4). This dependence on pH suggests that the ionization state of a histidine residue may be important in Na+-Ca2+ exchange. The effects of H+ on Nai+-dependent Ca2+ uptake are partially competitive with Ca2+, although this relationship is complex. Nao+-dependent Ca2+ efflux is also sensitive to H+ and increases monotonically with pH. These effects of pH appear to be due to intrinsic interactions with the Na+-Ca2+ exchange system and are not due to an alteration of Na+-H+ exchange or membrane permeability. The effects of pH on vesicular Na+-Ca2+ exchange are apparent only at low Ca2+ and Na+ concentrations. Thus modulation of vesicular Na+-Ca2+ exchange by pH is manifest only under ionic conditions which exist intracellularly in intact myocardium. Since the negative inotropy caused by acidosis is thought to reflect a fall in internal pH, these results suggest that alteration of sarcolemmal Ca2+ transport (mediated by Na+-Ca2+ exchange) by internal pH may contribute to the regulation of myocardial contractility by pH.


Circulation Research | 1998

Effects of Overexpression of the Na+-Ca2+ Exchanger on [Ca2+]i Transients in Murine Ventricular Myocytes

Atsushi Yao; Zhi Su; Akihiko Nonaka; Iram Zubair; Liyan Lu; Kenneth D. Philipson; John H. B. Bridge; William H. Barry

We measured [Ca2+]i and [Na+]i in isolated transgenic (TG) mouse myocytes overexpressing the Na+-Ca2+ exchanger and in wild-type (WT) myocytes. In TG myocytes, the peak systolic level and amplitude of electrically stimulated (ES) [Ca2+]i transients (0.25 Hz) were not significantly different from those in WT myocytes, but the time to peak [Ca2+]i was significantly prolonged. The decline of ES [Ca2+]i transients was significantly accelerated in TG myocytes. The decline of a long-duration (4-s) caffeine-induced [Ca2+]i transient was markedly faster in TG myocytes, and [Na+]i was identical in TG and WT myocytes, indicating that the overexpressed Na+-Ca2+ exchanger is functionally active. The decline of a short-duration (100-ms) caffeine-induced [Ca2+]i transient in 0 Na+/0 Ca2+ solution did not differ between the two groups, suggesting that the sarcoplasmic reticulum (SR) Ca2+-ATPase function is not altered by overexpression of the Na+-Ca2+ exchanger. There was no difference in L-type Ca2+ current density in WT and TG myocytes. However, the sensitivity of ES [Ca2+]i transients to nifedipine was reduced in TG myocytes. This maintenance of [Ca2+]i transients in nifedipine was inhibited by Ni2+ and required SR Ca2+ content, consistent with enhanced Ca2+ influx by reverse Na+-Ca2+ exchange, and the resulting Ca2+-induced Ca2+ release from SR. The rate of rise of [Ca2+]i transients in nifedipine in TG myocytes was much slower than when both the L-type Ca2+ current and the Na+-Ca2+ exchange current function together. In TG myocytes, action potential amplitude and action potential duration at 50% repolarization were reduced, and action potential duration at 90% repolarization was increased, relative to WT myocytes. These data suggest that under these conditions, overexpression of the Na+-Ca2+ exchanger in TG myocytes accelerates the decline of [Ca2+]i during relaxation, indicating enhanced forward Na+-Ca2+ exchanger function. Increased Ca2+ influx also appears to occur, consistent with enhanced reverse function. These findings provide support for the physiological importance of both these modes of Na+-Ca2+ exchange.


Journal of Biological Chemistry | 1999

A New Topological Model of the Cardiac Sarcolemmal Na+-Ca2+ Exchanger

Debora A. Nicoll; Michela Ottolia; Liyan Lu; Yujuan Lu; Kenneth D. Philipson

The current topological model of the Na+-Ca2+ exchanger consists of 11 transmembrane segments with extracellular loops a, c, e, g, i, and k and cytoplasmic loops b, d, f, h, and j. Cytoplasmic loop f, which plays a role in regulating the exchanger, is large and separates the first five from the last six transmembrane segments. We have tested this topological model by mutating residues near putative transmembrane segments to cysteine and then examining the effects of intracellular and extracellular applications of sulfhydryl-modifying reagents on exchanger activity. To aid in our topological studies, we also constructed a cysteineless Na+-Ca2+ exchanger. This mutant is fully functional in Na+gradient-dependent 45Ca2+ uptake measurements and displays wild-type regulatory properties. It is concluded that the 15 endogenous cysteine residues are not essential for either activity or regulation of the exchanger. Our data support the current model by placing loops c and e at the extracellular surface and loops d, j, and l at the intracellular surface. However, the data also support placing Ser-788 of loop h at the extracellular surface and Gly-837 of loop i at the intracellular surface. To account for these data, we propose a revision of the model that places transmembrane segment 6 in cytoplasmic loop f. Additionally, we propose that putative transmembrane segment 9 does not span the membrane, but may form a “P-loop”-like structure.


Circulation Research | 1998

Overexpression of the Cardiac Na+/Ca2+ Exchanger Increases Susceptibility to Ischemia/Reperfusion Injury in Male, but Not Female, Transgenic Mice

Heather R. Cross; Liyan Lu; Charles Steenbergen; Kenneth D. Philipson; Elizabeth Murphy

Influx of Ca2+ into myocytes via Na+/Ca2+ exchange may be stimulated by the high levels of intracellular Na+ and the changes in membrane potential known to occur during ischemia/reperfusion. This increased influx could, in turn, lead to Ca2+ overload and injury. Overexpression of the cardiac Na+/Ca2+ exchanger therefore may increase susceptibility to ischemia/reperfusion injury. To test this hypothesis, the hearts of male and female transgenic mice, overexpressing the Na+/Ca2+ exchange protein, and hearts of their wild-type littermates, were perfused with Krebs-Henseleit buffer and subjected to 20 minutes of ischemia and 40 minutes of reperfusion. Preischemic left ventricular developed pressures and +dP/dtmax, as well as -dP/dtmin, were higher in the male transgenic hearts compared with wild-type, implying a role for Na+/Ca2+ exchange in the contraction, as well as the relaxation, phases of the cardiac beat. Postischemic function was lower in male transgenic than in male wild-type hearts (7+/-2% versus 32+/-6% of preischemic function), but there was no difference between female transgenic and female wild-type hearts, both at approximately 30% of preischemic function. To assess whether this male/female difference was due to female-specific hormones such as estrogen, the hearts of bilaterally ovariectomized and sham-operated transgenic females were subjected to the same protocol. The functional recoveries of ovariectomized female transgenic hearts were lower (17+/-3% of preischemic function) than those of wild-type and sham-operated transgenic females. The lower postischemic functional recovery in the male transgenic and female ovariectomized transgenic hearts correlated with lower recoveries of the energy metabolites, ATP and phosphocreatine, as measured by 31P nuclear magnetic resonance spectroscopy. Alternans were observed during reperfusion in male transgenic and female ovariectomized transgenic hearts only, consistent with intracellular Ca2+ overload. Western analyses showed that alterations in the expression of the Na+/Ca2+ exchange or L-type Ca2+ channel proteins were not responsible for the protection observed in the female transgenic hearts. In conclusion, in males, overexpression of the Na+/Ca2+ exchanger reduced postischemic recovery of both contractile function and energy metabolites, indicating that the Na+/Ca2+ exchanger may play a role in ischemia/reperfusion injury. From the studies of females, however, it appears that this exacerbation of ischemia/reperfusion injury by overexpression of the Na+/Ca2+ exchanger can be overcome partially by female-specific hormones such as estrogen.


Current Opinion in Cell Biology | 1992

Sodium-calcium exchange.

Kenneth D. Philipson; Debora A. Nicoll

During the past year, significant advances have been made in the investigation of molecular, kinetic and electrophysiological aspects of Na(+)-Ca2+ exchange. The cardiac and retinal exchangers have been cloned and structure-function studies have begun.


American Journal of Physiology-cell Physiology | 1998

Functional comparison of the three isoforms of the Na+/Ca2+ exchanger (NCX1, NCX2, NCX3).

Bettina Linck; Zhiyong Qiu; Zhaoping He; Qiusheng Tong; Donald W. Hilgemann; Kenneth D. Philipson

Three distinct mammalian Na+/Ca2+exchangers have been cloned: NCX1, NCX2, and NCX3. We have undertaken a detailed functional comparison of these three exchangers. Each exchanger was stably expressed at high levels in the plasma membranes of BHK cells. Na+/Ca2+exchange activity was assessed using three different complementary techniques: Na+ gradient-dependent45Ca2+uptake into intact cells, Na+gradient-dependent45Ca2+uptake into membrane vesicles isolated from the transfected cells, and exchange currents measured using giant patches of excised cell membrane. Apparent affinities for the transported ions Na+ and Ca2+ were markedly similar for the three exchangers at both membrane surfaces. Likewise, generally similar responses to changes in pH, chymotrypsin treatment, and application of various inhibitors were obtained. Depletion of cellular ATP inhibited NCX1 and NCX2 but did not affect the activity of NCX3. Exchange activities of NCX1 and NCX3 were modestly increased by agents that activate protein kinases A and C. All exchangers were regulated by intracellular Ca2+. NCX1-induced exchange currents were especially large in excised patches and, like the native myocardial exchanger, were stimulated by ATP. Results may be influenced by our choice of expression system and specific splice variants, but, overall, the three exchangers appear to have very similar properties.


Biochimica et Biophysica Acta | 1988

Purification of the cardiac Na+Ca2+ exchange protein

Kenneth D. Philipson; Stefano Longoni; Robert Ward

We have used fractionation procedures to enrich solubilized cardiac sarcolemma in the Na+-Ca2+ exchange protein. Sarcolemma is extracted with an alkaline medium to remove peripheral proteins and is then solubilized with decylmaltoside. Next, the exchanger is applied to DEAE-Sepharose and eluted with high salt. The DEAE fraction is applied to WGA-agarose, and a small fraction of protein, enriched in the exchanger, can be eluted by changing the detergent to Triton X-100. This fraction is reconstituted into asolectin proteoliposomes for measurement of Na+-Ca2+ exchange activity and gel electrophoresis. The purified fraction has a Na+-Ca2+ exchange activity of 600 nmol Ca2+/mg of protein per s at 10 microM Ca2+ and a purification factor of about 30 as compared with control reconstituted sarcolemmal vesicles. Ca2+-Ca2+ exchange and Na+-Ca2+ exchange activities were both present in the same final reconstituted vesicles indicating that the same protein is responsible for both transport activities. SDS-PAGE reveals two prominent protein bands at 70 and 120 kDa. After mild chymotrypsin treatment (1 microgram/ml), there is no loss of exchange activity, but the 120 kDa band disappears and the 70 kDa band becomes more dense. This suggests that the 70 kDa band is due to an active proteolytic fragment of the 120 kDa protein. Under non-reducing gel conditions, only a single protein band is seen with an apparent molecular weight of 160 kDa. Antibodies to the purified exchanger preparation are able to immunoprecipitate exchange activity and confirm that the 70 kDa protein derives from the 120 kDa protein. We propose that both the 70 and 120 kDa proteins are associated with the Na+-Ca2+ exchanger.


Circulation Research | 2004

Functional Adult Myocardium in the Absence of Na+-Ca2+ Exchange. Cardiac-Specific Knockout of NCX1

Scott A. Henderson; Joshua I. Goldhaber; Jessica M. So; Tieyan Han; Christi Motter; An Ngo; Chana Chantawansri; Matthew R. Ritter; Martin Friedlander; Debora A. Nicoll; Joy S. Frank; Maria C. Jordan; Kenneth P. Roos; Robert S. Ross; Kenneth D. Philipson

The excitation–contraction coupling cycle in cardiac muscle is initiated by an influx of Ca2+ through voltage-dependent Ca2+ channels. Ca2+ influx induces a release of Ca2+ from the sarcoplasmic reticulum and myocyte contraction. To maintain Ca2+ homeostasis, Ca2+ entry is balanced by efflux mediated by the sarcolemmal Na+-Ca2+ exchanger. In the absence of Na+-Ca2+ exchange, it would be expected that cardiac myocytes would overload with Ca2+. Using Cre/loxP technology, we generated mice with a cardiac-specific knockout of the Na+-Ca2+ exchanger, NCX1. The exchanger is completely ablated in 80% to 90% of the cardiomyocytes as determined by immunoblot, immunofluorescence, and exchange function. Surprisingly, the NCX1 knockout mice live to adulthood with only modestly reduced cardiac function as assessed by echocardiography. At 7.5 weeks of age, measures of contractility are decreased by 20% to 30%. We detect no adaptation of the myocardium to the absence of the Na+-Ca2+ exchanger as measured by both immunoblots and microarray analysis. Ca2+ transients of isolated myocytes from knockout mice display normal magnitudes and relaxation kinetics and normal responses to isoproterenol. Under voltage clamp conditions, the current through L-type Ca2+ channels is reduced by 50%, although the number of channels is unchanged. An abbreviated action potential may further reduce Ca2+ influx. Rather than upregulate other Ca2+ efflux mechanisms, the myocardium appears to functionally adapt to the absence of the Na+-Ca2+ exchanger by limiting Ca2+ influx. The magnitude of Ca2+ transients appears to be maintained by an increased gain of sarcoplasmic reticular Ca2+ release. The myocardium of the NCX1 knockout mice undergoes a remarkable adaptation to maintain near normal cardiac function.

Collaboration


Dive into the Kenneth D. Philipson's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Christian Pott

University of California

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Joy S. Frank

University of California

View shared research outputs
Top Co-Authors

Avatar

Xiaoyan Ren

University of California

View shared research outputs
Top Co-Authors

Avatar

Rui Zhang

Cedars-Sinai Medical Center

View shared research outputs
Top Co-Authors

Avatar

Scott A. John

University of California

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge