Kenneth E. Sanderson
University of Calgary
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Kenneth E. Sanderson.
Nature | 2001
Michael McClelland; Kenneth E. Sanderson; John Spieth; Sandra W. Clifton; Phil Latreille; Laura Courtney; Steffen Porwollik; Johar Ali; Mike Dante; Feiyu Du; Shunfang Hou; Dan Layman; Shawn Leonard; Christine Nguyen; Kelsi Scott; Andrea Holmes; Neenu Grewal; Elizabeth Mulvaney; Ellen Ryan; Hui Sun; Liliana Florea; Webb Miller; Tamberlyn Stoneking; Michael Nhan; Robert H. Waterston; Richard Wilson
Salmonella enterica subspecies I, serovar Typhimurium (S. typhimurium), is a leading cause of human gastroenteritis, and is used as a mouse model of human typhoid fever. The incidence of non-typhoid salmonellosis is increasing worldwide, causing millions of infections and many deaths in the human population each year. Here we sequenced the 4,857-kilobase (kb) chromosome and 94-kb virulence plasmid of S. typhimurium strain LT2. The distribution of close homologues of S. typhimurium LT2 genes in eight related enterobacteria was determined using previously completed genomes of three related bacteria, sample sequencing of both S. enterica serovar Paratyphi A (S. paratyphi A) and Klebsiella pneumoniae, and hybridization of three unsequenced genomes to a microarray of S. typhimurium LT2 genes. Lateral transfer of genes is frequent, with 11% of the S. typhimurium LT2 genes missing from S. enterica serovar Typhi (S. typhi), and 29% missing from Escherichia coli K12. The 352 gene homologues of S. typhimurium LT2 confined to subspecies I of S. enterica—containing most mammalian and bird pathogens—are useful for studies of epidemiology, host specificity and pathogenesis. Most of these homologues were previously unknown, and 50 may be exported to the periplasm or outer membrane, rendering them accessible as therapeutic or vaccine targets.
Nature Genetics | 2004
Michael McClelland; Kenneth E. Sanderson; Sandra W. Clifton; Phil Latreille; Steffen Porwollik; Aniko Sabo; Rekha Meyer; Tamberlyn Bieri; Phil Ozersky; Michael D. McLellan; C Richard Harkins; Chunyan Wang; Christine Nguyen; Amy Berghoff; Glendoria Elliott; Sara Kohlberg; Cindy Strong; Feiyu Du; Jason Carter; Colin Kremizki; Dan Layman; Shawn Leonard; Hui Sun; Lucinda Fulton; William E. Nash; Tracie L. Miner; Patrick Minx; Kim D. Delehaunty; Catrina C. Fronick; Vincent Magrini
Salmonella enterica serovars often have a broad host range, and some cause both gastrointestinal and systemic disease. But the serovars Paratyphi A and Typhi are restricted to humans and cause only systemic disease. It has been estimated that Typhi arose in the last few thousand years. The sequence and microarray analysis of the Paratyphi A genome indicates that it is similar to the Typhi genome but suggests that it has a more recent evolutionary origin. Both genomes have independently accumulated many pseudogenes among their ∼4,400 protein coding sequences: 173 in Paratyphi A and ∼210 in Typhi. The recent convergence of these two similar genomes on a similar phenotype is subtly reflected in their genotypes: only 30 genes are degraded in both serovars. Nevertheless, these 30 genes include three known to be important in gastroenteritis, which does not occur in these serovars, and four for Salmonella-translocated effectors, which are normally secreted into host cells to subvert host functions. Loss of function also occurs by mutation in different genes in the same pathway (e.g., in chemotaxis and in the production of fimbriae).
Journal of Bacteriology | 2002
Gui-Rong Liu; Andrea Rahn; Wei-Qiao Liu; Kenneth E. Sanderson; Randal N. Johnston; Shu-Lin Liu
Salmonella enterica serovar Pullorum is a fowl-adapted bacterial pathogen that causes dysentery (pullorum disease). Host adaptation and special pathogenesis make S. enterica serovar Pullorum an exceptionally good system for studies of bacterial evolution and speciation, especially regarding pathogen-host interactions and the acquisition of pathogenicity. We constructed a genome map of S. enterica serovar Pullorum RKS5078, using I-CeuI, XbaI, AvrII, and SpeI and Tn10 insertions. Pulsed-field gel electrophoresis was employed to separate the large DNA fragments generated by the endonucleases. The genome is 4,930 kb, which is similar to most salmonellas. However, the genome of S. enterica serovar Pullorum RKS5078 is organized very differently from the majority of salmonellas, with three major inversions and one translocation. This extraordinary genome structure was seen in most S. enterica serovar Pullorum strains examined, with different structures in a minority of S. enterica serovar Pullorum strains. We describe the coexistence of different genome structures among the same bacteria as genomic plasticity. Through comparisons with S. enterica serovar Typhimurium, we resolved seven putative insertions and eight deletions ranging in size from 12 to 157 kb. The genomic plasticity seen among S. enterica serovar Pullorum strains supported our hypothesis about its association with bacterial evolution: a large genomic insertion (157 kb in this case) disrupted the genomic balance, and rebalancing by independent recombination events in individual lineages resulted in diverse genome structures. As far as the structural plasticity exists, the S. enterica serovar Pullorum genome will continue evolving to reach a further streamlined and balanced structure.
Journal of Clinical Microbiology | 2008
Stephen Baker; Kathryn E. Holt; Esther van de Vosse; Philippe Roumagnac; Sally Whitehead; Emma King; Philip Ewels; Andrew Keniry; François-Xavier Weill; Diane Lightfoot; Jaap T. van Dissel; Kenneth E. Sanderson; Jeremy Farrar; Mark Achtman; Panagiotis Deloukas; Gordon Dougan
ABSTRACT High-throughput epidemiological typing systems that provide phylogenetic and genotypic information are beneficial for tracking bacterial pathogens in the field. The incidence of Salmonella enterica serovar Typhi infection in Indonesia is high and is associated with atypical phenotypic traits such as expression of the j and the z66 flagellum antigens. Utilizing a high-throughput genotyping platform to investigate known nucleotide polymorphisms dispersed around the genome, we determined the haplotypes of 140 serovar Typhi isolates associated with Indonesia. We identified nine distinct serovar Typhi haplotypes circulating in Indonesia for more than 30 years, with eight of these present in a single Jakarta suburb within a 2-year period. One dominant haplotype, H59, is associated with j and z66 flagellum expression, representing a potential pathotype unique to Indonesia. Phylogenetic analysis suggests that H59 z66+, j+ isolates emerged relatively recently in terms of the origin of serovar Typhi and are geographically restricted. These data demonstrate the potential of high-throughput genotyping platforms for analyzing serovar Typhi populations in the field. The study also provides insight into the evolution of serovar Typhi and demonstrates the value of a molecular epidemiological technique that is exchangeable, that is internet friendly, and that has global utility.
Molecular Microbiology | 1993
Shu-Lin Liu; Andrew Hessel; Kenneth E. Sanderson
We have established the genomic cleavage map of Salmonella enteritidis strain SSU7998 using pulsed‐field gel electrophoresis. The chromosome of 4600kb was analysed by XbaI (16 fragments), I‐CeuI (7 fragments) and BlnI (12 fragments); the genome also contains a plasmid of 60 kb. Cleavage sites of I‐CeuI, in the large subunit ribosomal RNA gene, are conserved from Salmonella typhimurium and Escherichia coli K‐12, and the XbaI and BinI sites in glt‐tRNA are also conserved, but other sites are less conserved. Transposon Tn10, located at 60 different positions in the chromosome of S. typhimurium, was transduced by bacteriophage P22 into S. enteritidis and the insertion mapped using the XbaI and BlnI sites on Tn10. Gene order in S. enteritidis is identical to S. typhimurium LT2 and similar to E. coli K‐12 except for an inversion of 815 kb, which covers the terminus region including T1 and T2. Endpoints are in the NDZs, or non‐divisible zones, in which inversion endpoints were not detected in experiments in E. coli K‐12 and S. typhimurium LT2. This inversion resembles the inversion between S. typhimurium and E. coli, but is longer at both ends.
PLOS Pathogens | 2007
Stephen Baker; Jonathan Hardy; Kenneth E. Sanderson; Michael A. Quail; Ian Goodhead; Robert A. Kingsley; Julian Parkhill; Bruce A. D. Stocker; Gordon Dougan
Unlike the majority of Salmonella enterica serovars, Salmonella Typhi (S. Typhi), the etiological agent of human typhoid, is monophasic. S. Typhi normally harbours only the phase 1 flagellin gene (fliC), which encodes the H:d antigen. However, some S. Typhi strains found in Indonesia express an additional flagellin antigen termed H:z66. Molecular analysis of H:z66+ S. Typhi revealed that the H:z66 flagellin structural gene (fljBz66) is encoded on a linear plasmid that we have named pBSSB1. The DNA sequence of pBSSB1 was determined to be just over 27 kbp, and was predicted to encode 33 coding sequences. To our knowledge, pBSSB1 is the first non-bacteriophage–related linear plasmid to be described in the Enterobacteriaceae.
Journal of Bacteriology | 2005
Sushma Kothapalli; Satheesh Nair; Suneetha Alokam; Tikki Pang; Rasik Khakhria; David L. Woodward; Wendy M. Johnson; Bruce A. D. Stocker; Kenneth E. Sanderson; Shu-Lin Liu
The genomes of most strains of Salmonella and Escherichia coli are highly conserved. In contrast, all 136 wild-type strains of Salmonella enterica serovar Typhi analyzed by partial digestion with I-CeuI (an endonuclease which cuts within the rrn operons) and pulsed-field gel electrophoresis and by PCR have rearrangements due to homologous recombination between the rrn operons leading to inversions and translocations. Recombination between rrn operons in culture is known to be equally frequent in S. enterica serovar Typhi and S. enterica serovar Typhimurium; thus, the recombinants in S. enterica serovar Typhi, but not those in S. enterica serovar Typhimurium, are able to survive in nature. However, even in S. enterica serovar Typhi the need for genome balance and the need for gene dosage impose limits on rearrangements. Of 100 strains of genome types 1 to 6, 72 were only 25.5 kb off genome balance (the relative lengths of the replichores during bidirectional replication from oriC to the termination of replication [Ter]), while 28 strains were less balanced (41 kb off balance), indicating that the survival of the best-balanced strains was greater. In addition, the need for appropriate gene dosage apparently selected against rearrangements which moved genes from their accustomed distance from oriC. Although rearrangements involving the seven rrn operons are very common in S. enterica serovar Typhi, other duplicated regions, such as the 25 IS200 elements, are very rarely involved in rearrangements. Large deletions and insertions in the genome are uncommon, except for deletions of Salmonella pathogenicity island 7 (usually 134 kb) from fragment I-CeuI-G and 40-kb insertions, possibly a prophage, in fragment I-CeuI-E. The phage types were determined, and the origins of the phage types appeared to be independent of the origins of the genome types.
Journal of Bacteriology | 2001
Loes M. Pronk; Kenneth E. Sanderson
Intervening sequences (IVSs) in the rrl genes for 23S rRNA are transcribed but later removed by RNase III without religation during RNA processing, leading to fragmented rRNA. We examined about 240 strains of the family Enterobacteriaceae for presence of IVSs using PCR. No IVSs were detected in strains belonging to Escherichia, Shigella, Enterobacter, Erwinia, Ewingella, Hafnia, Kluyvera, Morganella, Pantoea, or Serratia. Previously unreported IVSs were detected in Klebsiella oxytoca, Citrobacter amalonaticus, and Providencia stuartii; previously reported IVSs are in species of Salmonella, Proteus, Providencia, and Yersinia. The sporadic distribution of IVSs indicates lateral genetic transfer of IVSs.
Journal of Bacteriology | 2002
Suneetha Alokam; Shu-Lin Liu; Kamal Said; Kenneth E. Sanderson
Genomic rearrangements (duplications and inversions) in enteric bacteria such as Salmonella enterica serovar Typhimurium LT2 and Escherichia coli K12 are frequent (10(-3) to 10(-5)) in culture, but in wild-type strains these genomic rearrangements seldom survive. However, inversions commonly survive in the terminus of replication (TER) region, where bidirectional DNA replication terminates; nucleotide sequences from S. enterica serovar Typhimurium LT2, S. enterica serovar Typhi CT18, E. coli K12, and E. coli O157:H7 revealed genomic inversions spanning the TER region. Assuming that S. enterica serovar Typhimurium LT2 represents the ancestral genome structure, we found an inversion of 556 kb in serovar Typhi CT18 between two of the 25 IS200 elements and an inversion of about 700 kb in E. coli K12 and E. coli O157:H7. In addition, there is another inversion of 500 kb in E. coli O157:H7 compared with E. coli K12. PCR analysis confirmed that all S. enterica serovar Typhi strains tested, but not strains of other Salmonella serovars, have an inversion at the exact site of the IS200 insertions. We conclude that inversions of the TER region survive because they do not significantly change replication balance or because they are part of the compensating mechanisms to regain chromosome balance after it is disrupted by insertions, deletions, or other inversions.
Journal of Bacteriology | 2000
Wayne L. Miller; Kanti Pabbaraju; Kenneth E. Sanderson
Intervening sequences (IVSs) were originally identified in the rrl genes for 23S rRNA (rrl genes, for large ribosomal subunit, part of rrn operon encoding rRNA) of Salmonella enterica serovars Typhimurium LT2 and Arizonae. These sequences are transcribed but later removed during RNase III processing of the rRNA, resulting in fragmentation of the 23S species; IVSs are uncommon, but have been reported in at least 10 bacterial genera. Through PCR amplification of IVS-containing regions of the rrl genes we showed that most Proteus and Providencia strains contain IVSs similar to those of serovar Typhimurium in distribution and location in rrl genes. By extraction and Northern blotting of rRNA, we also found that these IVSs result in rRNA fragmentation. We report the first finding of two very different sizes of IVS (113 bp and 183 to 187 bp) in different rrl genes in the same strain, in helix 25 of Proteus and Providencia spp.; IVSs from helix 45 are 113 to 123 bp in size. Analysis of IVS sequence and postulated secondary structure reveals striking similarities of Proteus and Providencia IVSs to those of serovar Typhimurium, with the stems of the smaller IVSs from helix 25 being similar to those of Salmonella helix 25 IVSs and with both the stem and the central loop domain of helix 45 IVSs being similar. Thus, IVSs of related sequences are widely distributed throughout the Enterobacteriaceae, in Salmonella, Yersinia, Proteus, and Providencia spp., but we did not find them in Escherichia coli, Citrobacter, Enterobacter, Klebsiella, or Morganella spp.; the sporadic distribution of IVSs of related sequence indicates that lateral genetic transfer has occurred.