Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Kenneth Fish is active.

Publication


Featured researches published by Kenneth Fish.


Cell Death and Disease | 2012

JNK modulates FOXO3a for the expression of the mitochondrial death and mitophagy marker BNIP3 in pathological hypertrophy and in heart failure

Antoine H. Chaanine; Dongtak Jeong; Lifan Liang; Elie R. Chemaly; Kenneth Fish; Ronald E. Gordon; Roger J. Hajjar

Bcl-2 E1B 19-KDa interacting protein 3 (BNIP3) is a mitochondrial death and mitophagy marker, which is involved in inducing cardiac remodeling post myocardial infarction. In this study, we show that BNIP3 expression increases in stressed cardiomyocytes in vitro and in response to pressure overload in vivo, and that its transcription is directly related to JNK activity. BNIP3 expression gradually increased in the first weeks after pressure overload and peaked at the heart failure stage. Ultrastructurally, the mitochondrial area was inversely proportional to BNIP3 expression. Both JNK and AKT activities increased with pressure overload; however, JNK signaling dominated over AKT signaling for the activation of the transcription factor FOXO3a and for the transcription of its effector, BNIP3. 3-methyladenine attenuated JNK signaling and significantly decreased BNIP3 expression and reversed cardiac remodeling in heart failure. Ultrastructurally, the mitochondrial area was significantly increased in the 3-methyladenine group compared with placebo. Moreover, adenoviral gene delivery of dominant negative JNK in a rat model of pressure overload hypertrophy abolished the increase in BNIP3 expression in response to pressure overload. These results suggest that JNK signaling is a critical modulator of the transcription factor FOXO3a driving the expression of its effector, BNIP3, in heart failure and that JNK, through BNIP3, induces mitochondrial apoptosis and mitophagy.


Circulation-heart Failure | 2013

AAV9.I-1c Delivered via Direct Coronary Infusion in a Porcine Model of Heart Failure Improves Contractility and Mitigates Adverse Remodeling

Kenneth Fish; Dennis Ladage; Yoshiaki Kawase; Ioannis Karakikes; Dongtak Jeong; Hung Ly; Kiyotake Ishikawa; Lahouaria Hadri; Lisa Tilemann; Jochen Müller-Ehmsen; R. Jude Samulski; Evangelia G. Kranias; Roger J. Hajjar

Background—Heart failure is characterized by impaired function and disturbed Ca2+ homeostasis. Transgenic increases in inhibitor-1 activity have been shown to improve Ca2 cycling and preserve cardiac performance in the failing heart. The aim of this study was to evaluate the effect of activating the inhibitor (I-1c) of protein phosphatase 1 (I-1) through gene transfer on cardiac function in a porcine model of heart failure induced by myocardial infarction. Methods and Results—Myocardial infarction was created by a percutaneous, permanent left anterior descending artery occlusion in Yorkshire Landrace swine (n=16). One month after myocardial infarction, pigs underwent intracoronary delivery of either recombinant adeno-associated virus type 9 carrying I-1c (n=8) or saline (n=6) as control. One month after myocardial infarction was created, animals exhibited severe heart failure demonstrated by decreased ejection fraction (46.4±7.0% versus sham 69.7±8.5%) and impaired (dP/dt)max and (dP/dt)min. Intracoronary injection of AAV9.I-1c prevented further deterioration of cardiac function and led to a decrease in scar size. Conclusions—In this preclinical model of heart failure, overexpression of I-1c by intracoronary in vivo gene transfer preserved cardiac function and reduced the scar size.


Science Translational Medicine | 2013

SUMO-1 Gene Transfer Improves Cardiac Function in a Large-Animal Model of Heart Failure

Lisa Tilemann; Ahyoung Lee; Kiyotake Ishikawa; Jaume Aguero; Kleopatra Rapti; Carlos G. Santos-Gallego; Erik Kohlbrenner; Kenneth Fish; Changwon Kho; Roger J. Hajjar

Cardiac gene delivery of small ubiquitin-related modifier 1 (SUMO-1) improved cardiac function and stabilized left ventricular volumes in a swine model of ischemic heart failure. Cardiac Gene Therapy to the Rescue Heart failure (HF) is one of the top reasons for hospitalization among the elderly and remains a leading cause of death in the Western world. Gene therapy has been proposed as a way to coerce the heart into being healthy by targeting cardiac-specific pathways. Replacing the gene sarcoplasmic reticulum Ca2+ adenosine triphosphatase (SERCA2a) in patients has made it to phase 2b/3 trials, with early signs pointing to an improvement in HF-related events. To boost the effects of SERCA2a, Tilemann et al. designed a large-animal study that also tests the delivery of small ubiquitin-related modifier 1 (SUMO-1)—an important regulator of SERCA2a. The authors compared the efficacy of SUMO-1 gene transfer to SERCA2a gene transfer alone and to the combined delivery of both genes in a pig model of HF. In addition to being safe, administering SUMO-1 directly to the heart of these animals showed improved cardiac contractility and prevented left ventricular dilatation (two major aspects of HF). According to the authors, the functional improvements in this model of heart failure are most likely the result of improved SR Ca2+ ATPase activity afforded by increased SUMO-1 protein levels. Delivery of both SUMO-1 and SERCA2a suggested additional beneficial effects, but more mechanistic studies will be needed to understand this potential synergy. With the precedent set by the SERCA2a clinical trials, moving SUMO-1 gene therapy from pigs to humans seems likely in the short-term. Recently, the impact of small ubiquitin-related modifier 1 (SUMO-1) on the regulation and preservation of sarcoplasmic reticulum calcium adenosine triphosphatase (SERCA2a) function was discovered. The amount of myocardial SUMO-1 is decreased in failing hearts, and its knockdown results in severe heart failure (HF) in mice. In a previous study, we showed that SUMO-1 gene transfer substantially improved cardiac function in a murine model of pressure overload–induced HF. Toward clinical translation, we evaluated in this study the effects of SUMO-1 gene transfer in a swine model of ischemic HF. One month after balloon occlusion of the proximal left anterior descending artery followed by reperfusion, the animals were randomized to receive either SUMO-1 at two doses, SERCA2a, or both by adeno-associated vector type 1 (AAV1) gene transfer via antegrade coronary infusion. Control animals received saline infusions. After gene delivery, there was a significant increase in the maximum rate of pressure rise [dP/dt(max)] that was most pronounced in the group that received both SUMO-1 and SERCA2a. The left ventricular ejection fraction (LVEF) improved after high-dose SUMO-1 with or without SERCA2a gene delivery, whereas there was a decline in LVEF in the animals receiving saline. Furthermore, the dilatation of LV volumes was prevented in the treatment groups. SUMO-1 gene transfer therefore improved cardiac function and stabilized LV volumes in a large-animal model of HF. These results support the critical role of SUMO-1 in SERCA2a function and underline the therapeutic potential of SUMO-1 for HF patients.


American Journal of Physiology-heart and Circulatory Physiology | 2014

Characterization of right ventricular remodeling and failure in a chronic pulmonary hypertension model

Jaume Aguero; Kiyotake Ishikawa; Lahouaria Hadri; Carlos G. Santos-Gallego; Kenneth Fish; Nadjib Hammoudi; Antoine H. Chaanine; Samantha Torquato; Charbel Naim; Borja Ibanez; Daniel Pereda; Ana García-Álvarez; Valentin Fuster; Partho P. Sengupta; Jane A. Leopold; Roger J. Hajjar

In pulmonary hypertension (PH), right ventricular (RV) dysfunction and failure is the main determinant of a poor prognosis. We aimed to characterize RV structural and functional differences during adaptive RV remodeling and progression to RV failure in a large animal model of chronic PH. Postcapillary PH was created surgically in swine (n = 21). After an 8- to 14-wk follow-up, two groups were identified based on the development of overt heart failure (HF): PH-NF (nonfailing, n = 12) and PH-HF (n = 8). In both groups, invasive hemodynamics, pressure-volume relationships, and echocardiography confirmed a significant increase in pulmonary pressures and vascular resistance consistent with PH. Histological analysis also demonstrated distal pulmonary arterial (PA) remodeling in both groups. Diastolic dysfunction, defined by a steeper RV end-diastolic pressure-volume relationship and longitudinal strain, was found in the absence of HF as an early marker of RV remodeling. RV contractility was increased in both groups, and RV-PA coupling was preserved in PH-NF animals but impaired in the PH-HF group. RV hypertrophy was present in PH-HF, although there was evidence of increased RV fibrosis in both PH groups. In the PH-HF group, RV sarcoplasmic reticulum Ca(2+)-ATPase2a expression was decreased, and endoplasmic reticulum stress was increased. Aldosterone levels were also elevated in PH-HF. Thus, in the swine pulmonary vein banding model of chronic postcapillary PH, RV remodeling occurs at the structural, histological, and molecular level. Diastolic dysfunction and fibrosis are present in adaptive RV remodeling, whereas the onset of RV failure is associated with RV-PA uncoupling, defective calcium handling, and hyperaldosteronism.


Nature Communications | 2015

Small-molecule activation of SERCA2a SUMOylation for the treatment of heart failure

Changwon Kho; Ahyoung Lee; Dongtak Jeong; Jae Gyun Oh; Przemek A. Gorski; Kenneth Fish; Roberto Sanchez; Robert J. DeVita; Geir Christensen; Russell Dahl; Roger J. Hajjar

Decreased activity and expression of the cardiac sarcoplasmic reticulum calcium ATPase (SERCA2a), a critical pump regulating calcium cycling in cardiomyocyte, are hallmarks of heart failure. We have previously described a role for the small ubiquitin-like modifier type 1 (SUMO-1) as a regulator of SERCA2a and have shown that gene transfer of SUMO-1 in rodents and large animal models of heart failure restores cardiac function. Here, we identify and characterize a small molecule, N106, which increases SUMOylation of SERCA2a. This compound directly activates the SUMO-activating enzyme, E1 ligase, and triggers intrinsic SUMOylation of SERCA2a. We identify a pocket on SUMO E1 likely to be responsible for N106s effect. N106 treatment increases contractile properties of cultured rat cardiomyocytes and significantly improves ventricular function in mice with heart failure. This first-in-class small-molecule activator targeting SERCA2a SUMOylation may serve as a potential therapeutic strategy for treatment of heart failure.


Molecular Therapy | 2014

Cardiac I-1c Overexpression With Reengineered AAV Improves Cardiac Function in Swine Ischemic Heart Failure

Kiyotake Ishikawa; Kenneth Fish; Lisa Tilemann; Kleopatra Rapti; Jaume Aguero; Carlos G. Santos-Gallego; Ahyoung Lee; Ioannis Karakikes; Chaoqin Xie; Fadi G. Akar; Yuichi J. Shimada; Judith K. Gwathmey; Aravind Asokan; Scott W.J. McPhee; Jade Samulski; Richard Jude Samulski; Daniel C. Sigg; Thomas Weber; Evangelia G. Kranias; Roger J. Hajjar

Cardiac gene therapy has emerged as a promising option to treat advanced heart failure (HF). Advances in molecular biology and gene targeting approaches are offering further novel options for genetic manipulation of the cardiovascular system. The aim of this study was to improve cardiac function in chronic HF by overexpressing constitutively active inhibitor-1 (I-1c) using a novel cardiotropic vector generated by capsid reengineering of adeno-associated virus (BNP116). One month after a large anterior myocardial infarction, 20 Yorkshire pigs randomly received intracoronary injection of either high-dose BNP116.I-1c (1.0 × 10(13) vector genomes (vg), n = 7), low-dose BNP116.I-1c (3.0 × 10(12) vg, n = 7), or saline (n = 6). Compared to baseline, mean left ventricular ejection fraction increased by 5.7% in the high-dose group, and by 5.2% in the low-dose group, whereas it decreased by 7% in the saline group. Additionally, preload-recruitable stroke work obtained from pressure-volume analysis demonstrated significantly higher cardiac performance in the high-dose group. Likewise, other hemodynamic parameters, including stroke volume and contractility index indicated improved cardiac function after the I-1c gene transfer. Furthermore, BNP116 showed a favorable gene expression pattern for targeting the heart. In summary, I-1c overexpression using BNP116 improves cardiac function in a clinically relevant model of ischemic HF.


Journal of Gene Medicine | 2011

Gene delivery methods in cardiac gene therapy

Kiyotake Ishikawa; Lisa Tilemann; Kenneth Fish; Roger J. Hajjar

Gene therapy for the treatment of heart failure is emerging as a multidisciplinary field demonstrating advances with respect to identifying key signaling pathways, modernized vector creation and delivery technologies. Although these discoveries offer significant progress, selecting optimal methods for the vector delivery remains a key component for efficient cardiac gene therapy to validate the targets in rodent models and to test clinically relevant ones in pre‐clinical models. Although the goals of higher transduction efficiency and cardiac specificity can be achieved with several delivery methods, the invasiveness and patient safety remain unclear for clinical application. In this review, we discuss various features of the currently available vector delivery methods for cardiac gene therapy. Copyright


Gene Therapy | 2012

Cardiac gene therapy in large animals: bridge from bench to bedside

Kiyotake Ishikawa; Lisa Tilemann; Dennis Ladage; Jaume Aguero; Lauren Leonardson; Kenneth Fish; Yoshiaki Kawase

Several clinical trials are evaluating gene transfer as a therapeutic approach to treat cardiac diseases. Although it has just started on the path to clinical application, recent advances in gene delivery technologies with increasing knowledge of underlying mechanisms raise great expectations for the cardiac gene therapy. Although in vivo experiments using small animals provide the therapeutic potential of gene transfer, there exist many fundamental differences between the small animal and the human hearts. Before applying the therapy to clinical patients, large animal studies are a prerequisite to validate the efficacy in an animal model more relevant to the human heart. Several key factors including vector type, injected dose, delivery method and targeted cardiac disease are all important factors that determine the therapeutic efficacy. Selecting the most optimal combination of these factors is essential for successful gene therapy. In addition to the efficacy, safety profiles need to be addressed as well. In this regard, large animal studies are best suited for comprehensive evaluation at the preclinical stages of therapeutic development to ensure safe and effective gene transfer. As the cardiac gene therapy expands its potential, large animal studies will become more important to bridge the bench side knowledge to the clinical arena.


Journal of Cardiovascular Translational Research | 2013

Percutaneous Approaches for Efficient Cardiac Gene Delivery

Kiyotake Ishikawa; Jaume Aguero; Charbel Naim; Kenneth Fish; Roger J. Hajjar

Gene therapy for heart failure treatment is currently being optimized and validated. The results to date are encouraging but challenges remain before it becomes a therapeutic approach in clinical cardiology. Much effort is dedicated to improve gene transduction efficiency by improving the vectors and the delivery methods. Successful translation from the benchtop to the bedside requires teams including biologists focusing on vector modification and cardiologists refining delivery methods. Two key components for translation to the clinic include safety and efficacy. Transduction efficiency is closely linked to invasiveness in most delivery methods. However, current candidates for cardiac gene therapy are patients without effective treatment option and are in advanced heart failure, thus a less invasive approach is preferred. This review focuses on injection methods of gene delivery with emphasis on percutaneous and endovascular approaches to summarize currently available percutaneous gene delivery methods and their features.


American Journal of Physiology-heart and Circulatory Physiology | 2012

Assessing left ventricular systolic dysfunction after myocardial infarction: are ejection fraction and dP/dtmax complementary or redundant?

Kiyotake Ishikawa; Elie R. Chemaly; Lisa Tilemann; Kenneth Fish; Dennis Ladage; Jaime Aguero; Torsten Vahl; Carlos G. Santos-Gallego; Yoshiaki Kawase; Roger J. Hajjar

Among the various cardiac contractility parameters, left ventricular (LV) ejection fraction (EF) and maximum dP/dt (dP/dt(max)) are the simplest and most used. However, these parameters are often reported together, and it is not clear if they are complementary or redundant. We sought to compare the discriminative value of EF and dP/dt(max) in assessing systolic dysfunction after myocardial infarction (MI) in swine. A total of 220 measurements were obtained. All measurements included LV volumes and EF analysis by left ventriculography, invasive ventricular pressure tracings, and echocardiography. Baseline measurements were performed in 132 pigs, and 88 measurements were obtained at different time points after MI creation. Receiver operator characteristic (ROC) curves to distinguish the presence or absence of an MI revealed a good predictive value for EF [area under the curve (AUC): 0.998] but not by dP/dt(max) (AUC: 0.69, P < 0.001 vs. EF). Dividing dP/dt(max) by LV end-diastolic pressure and heart rate (HR) significantly increased the AUC to 0.87 (P < 0.001 vs. dP/dt(max) and P < 0.001 vs. EF). In naïve pigs, the coefficient of variation of dP/dt(max) was twice than that of EF (22.5% vs. 9.5%, respectively). Furthermore, in n = 19 pigs, dP/dt(max) increased after MI. However, echocardiographic strain analysis of 23 pigs with EF ranging only from 36% to 40% after MI revealed significant correlations between dP/dt(max) and strain parameters in the noninfarcted area (circumferential strain: r = 0.42, P = 0.05; radial strain: r = 0.71, P < 0.001). In conclusion, EF is a more accurate measure of systolic dysfunction than dP/dt(max) in a swine model of MI. Despite the variability of dP/dt(max) both in naïve pigs and after MI, it may sensitively reflect the small changes of myocardial contractility.

Collaboration


Dive into the Kenneth Fish's collaboration.

Top Co-Authors

Avatar

Roger J. Hajjar

Icahn School of Medicine at Mount Sinai

View shared research outputs
Top Co-Authors

Avatar

Kiyotake Ishikawa

Icahn School of Medicine at Mount Sinai

View shared research outputs
Top Co-Authors

Avatar

Jaume Aguero

Centro Nacional de Investigaciones Cardiovasculares

View shared research outputs
Top Co-Authors

Avatar

Lisa Tilemann

Icahn School of Medicine at Mount Sinai

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Carlos G. Santos-Gallego

Icahn School of Medicine at Mount Sinai

View shared research outputs
Top Co-Authors

Avatar

Shin Watanabe

Icahn School of Medicine at Mount Sinai

View shared research outputs
Top Co-Authors

Avatar

Dennis Ladage

Icahn School of Medicine at Mount Sinai

View shared research outputs
Top Co-Authors

Avatar

Erik Kohlbrenner

Icahn School of Medicine at Mount Sinai

View shared research outputs
Top Co-Authors

Avatar

Yoshiaki Kawase

Icahn School of Medicine at Mount Sinai

View shared research outputs
Researchain Logo
Decentralizing Knowledge