Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Kenneth G. Holt is active.

Publication


Featured researches published by Kenneth G. Holt.


Human Movement Science | 1990

The force-driven harmonic oscillator as a model for human locomotion

Kenneth G. Holt; Joseph Hamill; Robert O. Andres

Abstract The study was conducted to determine whether the preferred frequency of locomotion was predictable as the least amount of energy required to drive a harmonic oscillator. Subjects were instructed to walk at a preferred rate under conditions where their ankles were unloaded and bilaterally loaded. These results were compared to the frequency which was predicted from the formula for a force-driven harmonic oscillator. The length of a simple pendulum equivalent of the lower extremity (thigh, shank, foot, and added mass) was used to approximate the length of the oscillator for prediction purposes. Results indicated that a constant of 2 applied to the gravitational constant of the period prediction formula provided a more accurate representation of the actual frequency. Similar results have been found in the walking gait of quadrupeds of widely varying sizes (Kugler and Turvey 1987).


Medicine and Science in Sports and Exercise | 1991

Predicting the minimal energy costs of human walking

Kenneth G. Holt; Joseph Hamill; Robert O. Andres

Preferred stride frequency (PSF) of human walking has been shown to be predictable as the resonant frequency of a force-drive harmonic oscillator (FDHO). The purpose of this study was to determine whether walking at the PSF and FDHO leads to minimal metabolic and mechanical costs. Subjects walked on a level treadmill at the PSF, FDHO, and frequencies above and below. Effects of stride length (SL) and speed (S) were assessed by two conditions, one in which SL was constant and the other in which S was constant. The predictability of PSF from resonance was replicated. Walking at the PSF and FDHO frequencies resulted in metabolic costs which were not significantly different (P greater than 0.05). A U-shaped oxygen consumption curve was observed with the minimum at the PSF and FDHO conditions when S was constant. A two-component curve in which a breakpoint was observed was found in the SL constant condition. A significant increase in metabolic cost was observed above the PSF/FDHO (P less than 0.01). Internal work (power) values were not significantly different between walking frequencies for the S constant condition. In the SL constant condition, internal work values showed linear increases as frequency increased. It was concluded that PSF of walking arises from the interface of the resonance properties of the limbs as oscillators and the tendency of biological systems to self-optimize.


Physical Therapy | 2006

Gait Characteristics of Elderly People With a History of Falls: A Dynamic Approach

Yaron Barak; Robert C. Wagenaar; Kenneth G. Holt

Background and Purpose. This study investigated changes in the kinematics of elderly people who experienced at least one fall 6 months prior to data collection. The authors hypothesized that, in order to decrease variability of walking, people with a history of falls would show different kinematic adaptations of their walking patterns compared with elderly people with no history of falls. Subjects and Methods. Twenty-one elderly people who had fallen within the previous 6 months (“fallers”; mean age=72.1 years, SD=4.9) and 27 elderly people with no history of falls (“nonfallers”; mean age=73.8 years, SD=6.4) walked at their preferred stride frequency (STF) as treadmill speed was gradually increased (from 0.18 m/s to 1.52 m/s) and then decreased in steps of 0.2 m/s. Gait parameter measurements were recorded, and statistical analysis was applied using walking speed and STF as independent variables. Results. Fifty-seven percent of the fallers were unable to walk at the fastest speed, whereas all nonfallers walked comfortably at all walking speeds. Although the fallers showed significantly greater STF, smaller stride lengths, smaller center-of-mass lateral sway, and smaller ankle plantar flexion and hip extension during push-off, they showed increased variability of kinematic measures in their coordination of walking compared with the nonfallers. Discussion and Conclusion. Although the fallers’ adaptations were expected to reduce variability in the coordination of walking, they showed less stable gait patterns (ie, greater variability) compared with the nonfallers. Increased variability of walking patterns may be an important gait risk factor in elderly people with a history of falls.


Journal of Motor Behavior | 1995

Energetic Cost and Stability during Human Walking at the Preferred Stride Frequency

Kenneth G. Holt; Suh-Fang Jeng; Robert Ratcliffe; Joseph Hamill

Abstract The possibility that preferred modes of locomotion emerge from dynamical and optimality constraints and the energetic and dynamical constraints on preferred and predicted walking frequency are explored in this article. Participants were required to walk on a treadmill at their preferred frequency, at a frequency predicted as the resonance of a hybrid pendulum-spring model of the legs, and at frequencies ±15%, ±25%, ±35% of the predicted frequency. Walking at the preferred and predicted frequencies resulted in minimal metabolic costs and maximal stability of the head and joint actions. Mechanical energy conservation was constant across conditions. The head was more stable than the joints. The joints appeared to be in service of the head in maintaining a stable trajectory. The major findings of this study suggest a complementary relationship between energetic (physiological) and stability constraints in the adoption of a preferred frequency of walking. Multiple subsystems may be involved in constra...


Human Movement Science | 1995

Shock attenuation and stride frequency during running

Joseph Hamill; T.R. Derrick; Kenneth G. Holt

Abstract Human locomotion has been modeled as a force-driven harmonic oscillator (FDHO). The minimum forcing function in locomotion has been shown to occur at the resonant frequency of the FDHO and results in the suggestion that oxygen cost may be considered an optimality criterion for locomotion. The purposes of this study were twofold: first, to determine the relationship between stride frequency and shock attenuation, and second, to determine whether shock attenuation may also be considered an optimality criterion. Ten healthy young adult males served as subjects in this study. Each subjects preferred running speed and preferred stride frequency (PSF) were determined. In addition to the PSF, they ran at stride frequencies corresponding to −20%, −10%, +10%, and +20% of the PSF at the preferred running speed. Metabolic data as well as leg and head acceleration data were collected during a steady state run at each of the stride frequency conditions. The metabolic data produced a U-shaped curve hypothesized by the FDHO model. Spectral analysis on the leg and head acceleration data were used to develop transfer functions for each of the stride frequency conditions. Analysis of the transfer function indicated that there was a gain at the low frequencies and an attenuation at the higher frequencies. The transfer function at the higher frequencies indicated that the impact shock signal was attenuated as it passed through the body. However, the transfer functions appeared to vary according to the amount of shock input to the system with the result that the head accelerations remained constant. It would appear that impact (high frequency) shock attenuation increases with stride frequency and thus does not fit the FDHO model as an optimization criterion. At all stride frequencies, regardless of the impact shock, head accelerations were maintained at a constant level.


Journal of Biomechanics | 2003

How do load carriage and walking speed influence trunk coordination and stride parameters

Michael LaFiandra; Robert C. Wagenaar; Kenneth G. Holt; John P. Obusek

To determine the effects of load carriage and walking speed on stride parameters and the coordination of trunk movements, 12 subjects walked on a treadmill at a range of walking speeds (0.6-1.6 m s(-1)) with and without a backpack containing 40% of their body mass. It was hypothesized that compared to unloaded walking, load carriage decreases transverse pelvic and thoracic rotation, the mean relative phase between pelvic and thoracic rotations, and increases hip excursion. In addition, it was hypothesized that these changes would coincide with a decreased stride length and increased stride frequency. The findings supported the hypotheses. Dimensionless analyses indicated that there was a significantly larger contribution of hip excursion and smaller contribution of transverse plane pelvic rotation to increases in stride length during load carriage. In addition, there was a significant effect of load carriage on the amplitudes of transverse pelvic and thoracic rotation and the relative phase of pelvic and thoracic rotation. It was concluded that the shorter stride length and higher stride frequency observed when carrying a backpack is the result of decreased pelvic rotation. During unloaded walking, increases in pelvic rotation contribute to increases in stride length with increasing walking speed. The decreased pelvic rotation during load carriage requires an increased hip excursion to compensate. However, the increase in hip excursion is insufficient to fully compensate for the observed decrease in pelvis rotation, requiring an increase in stride frequency during load carriage to maintain a constant walking speed.


Medicine and Science in Sports and Exercise | 1992

Timing of lower extremity joint actions during treadmill running.

Joseph Hamill; Barry T. Bates; Kenneth G. Holt

It has been suggested that a disruption in timing between the subtalar and knee joints may be a possible mechanism for knee injury. It has also been documented that shoe construction can alter rearfoot motion. The purpose of the study was to describe the relationship between the subtalar and knee joint actions during the support phase of treadmill running while wearing different shoes. Twelve healthy subjects ran in each of three running shoes with unique midsole durometers (C1, 70; C2, 55; C3, 45). High-speed video (200 Hz) of the rear and sagittal views of each subject/condition were taken during the last minute of a 5-min run. Retro-reflective markers were processed to determine the rearfoot angle and the sagittal view knee angle. The shoes were also subjected to a midsole material impact test. The impact test results indicated a linear trend in peak g and time to peak g across midsoles with the firmer midsole having a greater peak g and a shorter time to peak g. The results of the kinematic analysis indicated that there were no significant differences among the shoe conditions for the knee flexion parameters. However, there were significant differences in both the magnitude and the time to maximum pronation between the two firmer midsole conditions (C1 and C2) and the softer midsole condition (C3), indicating a nonlinear trend for these parameters. The softer midsole exhibited greater pronation values and a shorter time to maximum pronation.(ABSTRACT TRUNCATED AT 250 WORDS)


international conference on robotics and automation | 2013

A lightweight soft exosuit for gait assistance

Michael Wehner; Brendan Quinlivan; Patrick M. Aubin; Ernesto Martinez-Villalpando; Michael Baumann; Leia Stirling; Kenneth G. Holt; Robert J. Wood; Conor J. Walsh

In this paper we present a soft lower-extremity robotic exosuit intended to augment normal muscle function in healthy individuals. Compared to previous exoskeletons, the device is ultra-lightweight, resulting in low mechanical impedance and inertia. The exosuit has custom McKibben style pneumatic actuators that can assist the hip, knee and ankle. The actuators attach to the exosuit through a network of soft, inextensible webbing triangulated to attachment points utilizing a novel approach we call the virtual anchor technique. This approach is designed to transfer forces to locations on the body that can best accept load. Pneumatic actuation was chosen for this initial prototype because the McKibben actuators are soft and can be easily driven by an off-board compressor. The exosuit itself (human interface and actuators) had a mass of 3500 g and with peripherals (excluding air supply) is 7144 g. In order to examine the exosuits performance, a pilot study with one subject was performed which investigated the effect of the ankle plantar-flexion timing on the wearers hip, knee and ankle joint kinematics and metabolic power when walking. Wearing the suit in a passive unpowered mode had little effect on hip, knee and ankle joint kinematics as compared to baseline walking when not wearing the suit. Engaging the actuators at the ankles at 30% of the gait cycle for 250 ms altered joint kinematics the least and also minimized metabolic power. The subjects average metabolic power was 386.7 W, almost identical to the average power when wearing no suit (381.8 W), and substantially less than walking with the unpowered suit (430.6 W). This preliminary work demonstrates that the exosuit can comfortably transmit joint torques to the user while not restricting mobility and that with further optimization, has the potential to reduce the wearers metabolic cost during walking.


Science | 2013

The Lower Limb and Mechanics of Walking in Australopithecus sediba

Jeremy M. DeSilva; Kenneth G. Holt; Steven E. Churchill; Kristian J. Carlson; Christopher S. Walker; Bernhard Zipfel; Lee R. Berger

The discovery of a relatively complete Australopithecus sediba adult female skeleton permits a detailed locomotor analysis in which joint systems can be integrated to form a comprehensive picture of gait kinematics in this late australopith. Here we describe the lower limb anatomy of Au. sediba and hypothesize that this species walked with a fully extended leg and with an inverted foot during the swing phase of bipedal walking. Initial contact of the lateral foot with the ground resulted in a large pronatory torque around the joints of the foot that caused extreme medial weight transfer (hyperpronation) into the toe-off phase of the gait cycle (late pronation). These bipedal mechanics are different from those often reconstructed for other australopiths and suggest that there may have been several forms of bipedalism during the Plio-Pleistocene.


Journal of Biomechanics | 2003

Increased musculoskeletal stiffness during load carriage at increasing walking speeds maintains constant vertical excursion of the body center of mass.

Kenneth G. Holt; Robert C. Wagenaar; Michael LaFiandra; Masayoshi Kubo; John P. Obusek

The primary objective of this research was to determine changes in body and joint stiffness parameters and kinematics of the knee and body center of mass (COM), that result from wearing a backpack (BP) with a 40% body weight load at increasing speeds of walking. It was hypothesized that there would be speed and load-related increases in stiffness that would prevent significant deviations in the COM trajectory and in lower-extremity joint angles. Three independent biomechanical models employing kinematic data were used to estimate global lower-extremity stiffness, vertical stiffness and knee joint rotational stiffness in the sagittal plane during walking on a treadmill at speeds of 0.6-1.6 ms(-1) in 0.2 ms(-1) increments in BP and no backpack conditions. Kinematic data were collected using an Optotrak, three-dimensional motion analysis system. Knee angles and vertical excursion of the COM during the compression (loading phase) increased as a function of speed but not load. All three estimates of stiffness showed significant increases as a function of both speed and load. Significant interaction effects indicated a convergence of load-related stiffness values at lower speeds. Results suggested that increases in muscle-mediated stiffness are used to maintain a constant vertical excursion of the COM under load across the speeds tested, and thereby limit increases in metabolic cost that would occur if the COM would travel through greater vertical range of motion.

Collaboration


Dive into the Kenneth G. Holt's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Joseph Hamill

University of Massachusetts Amherst

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

John P. Obusek

United States Army Research Institute of Environmental Medicine

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge