Kenneth Gavin
University College Dublin
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Kenneth Gavin.
Journal of Geotechnical and Geoenvironmental Engineering | 2011
Paul Doherty; Kenneth Gavin
This paper describes an experimental investigation designed to assess the impact of pile end condition on the capacity of piles installed in soft clay. A series of field tests are described in which instrumented open-ended and closed-ended model piles were jacked into soft clay. The radial stresses, pore pressures, and load distribution were recorded throughout installation, equalization, and load-testing. Although the total stress and pore pressure developed during installation were related to the degree of soil plugging, the radial effective stress that controls the shaft resistance was shown to be independent of the mode of penetration. The long-term shaft capacity of the open-ended pile was closely comparable to that developed by closed-ended piles, suggesting a limited influence of end condition on the fully equalized shaft resistance. In contrast to the shaft resistance, the base capacity was highly dependent on the degree of plugging.
European Journal of Engineering Education | 2011
Kenneth Gavin
This paper describes the use of project-based learning to teach design skills to civil engineering students at University College Dublin (UCD). The paper first considers the development of problem-based leaning (PBL) as a tool in higher education. The general issues to be considered in the design of the curriculum for a PBL module are reviewed. Consideration of the literature on the application of PBL in civil engineering suggests that, because of the hierarchical nature of engineering education, PBL is best applied in a hybrid form known as Project Based Learning. A detailed description is given of how hybrid PBL was implemented in the final year of a civil engineering degree programme. In the final section, the results of an evaluation process designed to gain an insight into students’ perceptions of the PBL process are reviewed. The module, which was developed at UCD, provided an excellent mechanism for developing many skills, including problem-solving, innovation, group-working and presentation skills desired by graduate employers. It was clear that the students enjoyed the peer to peer teaching and increased interaction with staff and external experts, which the problem-solving nature of the module facilitated.
Near Surface Geophysics | 2011
Shane Donohue; Kenneth Gavin; Ali Tolooiyan
A geophysical investigation was carried out after the failure of an important railway embankment in the south-east of Ireland. The embankment, which had a long-term history of stability problems, was studied using a combination of ground-penetrating radar (GPR), electrical resistivity tomography (ERT), multichannel analysis of surface waves (MASW) and geotechnical testing. A significant thickening of the ballast layer around the failure location was observed using GPR, which confirmed the existence of an ongoing stability problem in the area. ERT profiles determined the presence and spatial extent of a significant layer of soft clay both beneath and to the east of the embankment, which could have a major impact on its long-term stability. ERT also detected steeply sloping bedrock close to the failure zone that is likely to have contributed to the long-term settlement of the embankment, which necessitated frequent re-ballasting. MASW confirmed the presence of the steeply sloping bedrock in addition to determining the low stiffness ( G max ) values of the embankment fill. High quality sampling of the soft clay deposit was undertaken and strength and compressibility tests revealed the importance of this layer to both the on-going serviceability problems evident for the original embankment and the stability problems encountered by the remodelled section.
Journal of Bridge Engineering | 2016
Luke J. Prendergast; David Hester; Kenneth Gavin
Bridge scour is the number one cause of failure in bridges located over waterways. Scour leads to rapid losses in foundation stiffness and can cause sudden collapse. Previous research on bridge health monitoring has used changes in natural frequency to identify damage in bridge beams. The possibility of using a similar approach to identifying scour is investigated in this paper. To assess if this approach is feasible, it is necessary to establish how scour affects the natural frequency of a bridge, and if it is possible to measure changes in frequency using the bridge dynamic response to a passing vehicle. To address these questions, a novel vehicle–bridge–soil interaction (VBSI) model was developed. By carrying out a modal study in this model, it is shown that for a wide range of possible soil states, there is a clear reduction in the natural frequency of the first mode of the bridge with scour. Moreover, it is shown that the response signals on the bridge from vehicular loading are sufficient to allow these changes in frequency to be detected.
16th European Conference on Soil Mechanics and Geotechnical Engineering | 2015
B. W. Byrne; R McAdam; H. J. Burd; G. T. Houlsby; C. M. Martin; Kenneth Gavin; Paul Doherty; David Igoe; Lidija Zdravkovic; Dmg Taborda; David M. Potts; R. J. Jardine; M Sideri; Fc Schroeder; A Muir Wood; D Kallehave; J Skov Gretlund
The nature-inspired concept of self-healing materials in construction is relatively new and has recently attracted significant attention as this could bring about substantial savings in maintenance costs as well as enhance the durability and serviceability and improve the safety of our structures and infrastructure. Much of the research and applications to date has focused on concrete, for structural applications, and on asphalt, with significant advances being made. However, to date no attention has been given to the incorporation of self-healing concepts in geotechnical and geo-environmental applications. This includes the use of concrete and other stabilising agents in foundations and other geotechnical structures, grouts, grouted soil systems, soil-cement systems and slurry walls for ground improvement and land remediation applications. The recently established Materials for Life (M4L) project funded by EPSRC has initiated research activities in the UK focussing on those applications. The project involves the development and integration of the use of microcapsules, biological agents, shape memory polymers and vascular networks as healing systems. The authors are exploring development of self-healing systems using mineral admixtures, microencapsulation and bio-cementation applications. The paper presents an overview of those initiatives to date and potential applications and presents some relevant preliminary results.By contrast to studies in petroleum geology and, despite their world-wide occurrence, geotechnical studies of ancient fluvial sediments are rare. This paper introduces the main characteristics of these sediments by reference to a classic UK example. Attention is then drawn to a number of major overseas examples where, although the principal features can be recognised, large differences arise as a result of factors such as the tectonic setting, the volume and mineralogy of the source material and the climate at the time the sediments were deposited. The first, over-riding problem for their engineering evaluation comes during the site investigation phase with the difficulty of deducing the geological structure and distribution of the widely varying lithologies.Strain accumulation in granular soils due to dynamic loading is investigated through long term cyclic triaxial tests and cyclic triaxial tests according to ASTM D 3999-91. Soil parameters, test equipment and loading conditions have a significant influence on strain accumulation, therefore a parameterization of the silica sand and a description of the cyclic triaxial test device are explained. Cyclic triaxial tests are performed and test results are presented illustrating the evolution of Young’s modulus during long term cyclic loading. The influence of the width of the stress-strain loop and the initial void ratio on strain accumulation is investigated and validated with existing accumulation models. The usefulness of Miner’s rule on sand subjected to cyclic loading is demonstrated by two tests with different packages of loading cycles.
Journal of Geotechnical and Geoenvironmental Engineering | 2013
Paul Doherty; Kenneth Gavin
AbstractThis paper presents the results of a field investigation into pile aging in soft clay that was conducted over a period of 10 years. Static load tests were conducted after the excess pore pressure generated by the installation of 6-m-long, driven concrete piles were fully equalized. These tests allowed the time-capacity aging profile to be established. A normalized capacity-time trend established for the case history is seen to be consistent with the response observed from a wider database of pile tests in clay compiled from the literature. A simple reliability-based design example is provided to highlight the positive impact that pile aging could have for industrial practice.
Journal of Geotechnical and Geoenvironmental Engineering | 2009
Kenneth Gavin; David Cadogan; Patrick Casey
This paper presents the results of a series of field experiments performed to study the development of shaft resistance on continuous flight auger piles installed in sand. The test piles were instrumented in order to separate the shaft and base resistance, and to allow the determination of the distribution of shaft resistance along the pile shaft. The tests highlighted the importance of accurate calculation of the shaft resistance for nondisplacement piles. At a typical maximum allowable pile head settlement of 25 mm, more than 71% of the pile resistance was provided by shaft friction. Conventional methods of estimating shaft resistance were assessed. It was found that methods which incorporated parameters directly interpreted from in situ test results provided the most consistent estimates. In the final section, differences between the shaft resistances mobilized on displacement and nondisplacement piles are considered.
Geotechnical Testing Journal | 2010
David Igoe; Paul Doherty; Kenneth Gavin
This paper describes the development of a model instrumented open-ended (pipe) pile. The importance of model geometry and separating the shaft, annular and plug load, and horizontal effective stresses is discussed. A detailed description of the construction of the twin-walled open-ended pile is presented. Particular attention was given to protecting the fragile instrumentation from the rigours of installation and the effects of water ingress. Calibration procedures, which were used to verify the instrument reliability, are also discussed. The final section describes field tests conducted in both loose sand and medium-dense sand deposits, which are used to validate the instrument performance.
European Journal of Engineering Education | 2010
Kenneth Gavin
This paper describes the design of the curriculum for a Master of Engineering programme in civil engineering at University College Dublin. The revised programme was established to meet the requirements of the Bologna process and this paper specifically considers the design of a new, second-cycle masters component of the programme. In addition to considering the content required to meet the learning outcome specified by the professional accreditation body, the paper presents details of attempts to move from a traditional instructor-centred model to a student-centred model of education in order to promote reflective (deep) learning. Although the paper presents a model curriculum for a civil engineering programme, the holistic approach to curriculum design outlined, which considers the organisation, sequence and evaluation strategies adopted, is applicable to all subject areas in higher education.
Shock and Vibration | 2016
Luke J. Prendergast; David Hester; Kenneth Gavin
Damage detection in bridges using vibration-based methods is an area of growing research interest. Improved assessment methodologies combined with state-of-the-art sensor technology are rapidly making these approaches applicable for real-world structures. Applying these techniques to the detection and monitoring of scour around bridge foundations has remained challenging; however this area has gained attraction in recent years. Several authors have investigated a range of methods but there is still significant work required to achieve a rounded and widely applicable methodology to detect and monitor scour. This paper presents a novel Vehicle-Bridge-Soil Dynamic Interaction (VBSDI) model which can be used to simulate the effect of scour on an integral bridge. The model outputs dynamic signals which can be analysed to determine modal parameters and the variation of these parameters with respect to scour can be examined. The key novelty of this model is that it is the first numerical model for simulating scour that combines a realistic vehicle loading model with a robust foundation soil response model. This paper provides a description of the model development and explains the mathematical theory underlying the model. Finally a case study application of the model using typical bridge, soil, and vehicle properties is provided.