Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Kenneth H. Roux is active.

Publication


Featured researches published by Kenneth H. Roux.


Nature | 2006

Distribution and three-dimensional structure of AIDS virus envelope spikes

Ping Zhu; Jun Liu; Julian W. Bess; Elena Chertova; Jeffrey D. Lifson; Henry Grise; Gilad Ofek; Kenneth A. Taylor; Kenneth H. Roux

Envelope glycoprotein (Env) spikes on AIDS retroviruses initiate infection of host cells and are therefore targets for vaccine development. Though crystal structures for partial Env subunits are known, the structure and distribution of native Env spikes on virions is obscure. We applied cryoelectron microscopy tomography to define ultrastructural details of spikes. Virions of wild-type human immunodeficiency virus 1 (HIV-1) and a mutant simian immunodeficiency virus (SIV) had ∼14 and ∼73 spikes per particle, respectively, with some clustering of HIV-1 spikes. Three-dimensional averaging showed that the surface glycoprotein (gp120) ‘head’ of each subunit of the trimeric SIV spike contains a primary mass, with two secondary lobes. The transmembrane glycoprotein ‘stalk’ of each trimer is composed of three independent legs that project obliquely from the trimer head, tripod-like. Reconciling available atomic structures with the three-dimensional whole spike density map yields insights into the orientation of Env spike structural elements and possible structural bases of their functions.


BioTechniques | 1996

High and low annealing temperatures increase both specificity and yield in touchdown and stepdown PCR

Karl H. Hecker; Kenneth H. Roux

Touchdown (TD) PCR represents a versatile one-step procedure for optimizing PCRs even if the degree of primer-template complementarity is not fully known. The protocol relies on incremental annealing temperature decreases in progressive cycles designed to bracket the melting temperature (Tm) of the reaction. Here we investigate the characteristics of TD PCR that serve to minimize the need to optimize annealing temperature or buffer conditions and yet produce single strong target amplicons. We demonstrate that priming initiates above the optimum annealing temperature; this helps to ensure a competitive advantage for the target amplicon. On the other hand, as the cycling program progresses, annealing temperatures well below the Tm can serve to significantly increase yields in reactions that would otherwise be marginal due to suboptimal buffer composition and yet do not promote spurious amplification. Modified forms of TD PCR, termed stepdown PCR, consisting of fewer but steeper incremental declines in annealing temperature, are also shown to be effective and can simplify thermal cycler programming.


Proceedings of the National Academy of Sciences of the United States of America | 2003

Electron tomography analysis of envelope glycoprotein trimers on HIV and simian immunodeficiency virus virions

Ping Zhu; Elena Chertova; Julian W. Bess; Jeffrey D. Lifson; Larry O. Arthur; Jun Liu; Kenneth A. Taylor; Kenneth H. Roux

We used electron tomography to directly visualize trilobed presumptive envelope (env) glycoprotein structures on the surface of negatively stained HIV type 1 (HIV-1) and simian immunodeficiency virus (SIV) virions. Wild–type HIV-1 and SIV virions had an average of 8–10 trimers per virion, consistent with predictions based on biochemical evidence. Mutant SIVs, biochemically demonstrated to contain high levels of the viral env proteins, averaged 70–79 trimers per virion in tomograms. These correlations strongly indicate that the visualized trimers represent env spikes. The env trimers were without obvious geometric distribution pattern or preferred rotational orientation. Combined with biochemical analysis of gag/env ratios in virions, these trimer counts allow calculation of the number of gag molecules per virion, yielding an average value of ≈1,400. Virion and env dimensions were also determined. Image-averaging analysis of SIV env trimers revealed a distinct chirality and strong concordance with recent molecular models. The results directly demonstrate the presence of env trimers on the surface of AIDS virus virions, albeit at numbers much lower than generally appreciated, and have important implications for understanding virion formation, virus interactions with host cells, and virus neutralization.


Journal of Virology | 2006

Nature of Nonfunctional Envelope Proteins on the Surface of Human Immunodeficiency Virus Type 1

Penny L. Moore; Emma T. Crooks; Lauren Porter; Ping Zhu; Charmagne Cayanan; Henry Grise; Paul Corcoran; Michael B. Zwick; Michael Franti; Lynn Morris; Kenneth H. Roux; Dennis R. Burton; James M. Binley

ABSTRACT Human immunodeficiency virus type 1 (HIV-1) neutralizing antibodies are thought be distinguished from nonneutralizing antibodies by their ability to recognize functional gp120/gp41 envelope glycoprotein (Env) trimers. The antibody responses induced by natural HIV-1 infection or by vaccine candidates tested to date consist largely of nonneutralizing antibodies. One might have expected a more vigorous neutralizing response, particularly against virus particles that bear functional trimers. The recent surprising observation that nonneutralizing antibodies can specifically capture HIV-1 may provide a clue relating to this paradox. Specifically, it was suggested that forms of Env, to which nonneutralizing antibodies can bind, exist on virus surfaces. Here, we present evidence that HIV-1 particles bear nonfunctional gp120/gp41 monomers and gp120-depleted gp41 stumps. Using a native electrophoresis band shift assay, we show that antibody-trimer binding predicts neutralization and that the nonfunctional forms of Env may account for virus capture by nonneutralizing antibodies. We hypothesize that these nonfunctional forms of Env on particle surfaces serve to divert the antibody response, helping the virus to evade neutralization.


International Archives of Allergy and Immunology | 2003

Tree Nut Allergens

Kenneth H. Roux; Suzanne S. Teuber; Shridhar K. Sathe

Allergic reactions to tree nuts can be serious and life threatening. Considerable research has been conducted in recent years in an attempt to characterize those allergens that are most responsible for allergy sensitization and triggering. Both native and recombinant nut allergens have been identified and characterized and, for some, the IgE-reactive epitopes described. Some allergens, such as lipid transfer proteins, profilins, and members of the Bet v 1-related family, represent minor constituents in tree nuts. These allergens are frequently cross-reactive with other food and pollen homologues, and are considered panallergens. Others, such as legumins, vicilins, and 2S albumins, represent major seed storage protein constituents of the nuts. The allergenic tree nuts discussed in this review include those most commonly responsible for allergic reactions such as hazelnut, walnut, cashew, and almond as well as those less frequently associated with allergies including pecan, chestnut, Brazil nut, pine nut, macadamia nut, pistachio, coconut, Nangai nut, and acorn.


Journal of Virology | 2002

Oligomeric and conformational properties of a proteolytically mature, disulfide-stabilized human immunodeficiency virus type 1 gp140 envelope glycoprotein.

Norbert Schülke; Mika Vesanen; Rogier W. Sanders; Ping Zhu; Min Lu; Deborah J. Anselma; Anthony R. Villa; Paul W. H. I. Parren; James M. Binley; Kenneth H. Roux; Paul J. Maddon; John P. Moore; William C. Olson

ABSTRACT We describe the further properties of a protein, designated SOS gp140, wherein the association of the gp120 and gp41 subunits of the human immunodeficiency virus type 1 (HIV-1) envelope glycoprotein is stabilized by an intersubunit disulfide bond. HIV-1JR-FL SOS gp140, proteolytically uncleaved gp140 (gp140UNC), and gp120 were expressed in stably transfected Chinese hamster ovary cells and analyzed for antigenic and structural properties before and after purification. Compared with gp140UNC, SOS gp140 reacted more strongly in surface plasmon resonance and radioimmunoprecipitation assays with the neutralizing monoclonal antibodies (MAbs) 2G12 (anti-gp120), 2F5 (anti-gp41), and 17b (to a CD4-induced epitope that overlaps the CCR5-binding site). In contrast, gp140UNC displayed the greater reactivity with nonneutralizing anti-gp120 and anti-gp41 MAbs. Immunoelectron microscopy studies suggested a model for SOS gp140 wherein the gp41 ectodomain (gp41ECTO) occludes the “nonneutralizing” face of gp120, consistent with the antigenic properties of this protein. We also report the application of Blue Native polyacrylamide gel electrophoresis (BN-PAGE), a high-resolution molecular sizing method, to the study of viral envelope proteins. BN-PAGE and other biophysical studies demonstrated that SOS gp140 was monomeric, whereas gp140UNC comprised a mixture of noncovalently associated and disulfide-linked dimers, trimers, and tetramers. The oligomeric and conformational properties of SOS gp140 and gp140UNC were largely unaffected by purification. An uncleaved gp140 protein containing the SOS cysteine mutations (SOS gp140UNC) was also oligomeric. Surprisingly, variable-loop-deleted SOS gp140 proteins were expressed (although not yet purified) as cleaved, noncovalently associated oligomers that were significantly more stable than the full-length protein. Overall, our findings have relevance for rational vaccine design.


Journal of Virology | 2003

Purification, Characterization, and Immunogenicity of a Soluble Trimeric Envelope Protein Containing a Partial Deletion of the V2 Loop Derived from SF162, an R5-Tropic Human Immunodeficiency Virus Type 1 Isolate

Indresh K. Srivastava; Leonidas Stamatatos; Elaine Kan; Michael Vajdy; Ying Lian; Susan Hilt; Loïc Martin; Claudio Vita; Ping Zhu; Kenneth H. Roux; Lucia Vojtech; David C. Montefiori; John Donnelly; Jeffrey B. Ulmer; Susan W. Barnett

ABSTRACT The envelope (Env) glycoprotein of human immunodeficiency virus type 1 (HIV-1) is the major target of neutralizing antibody responses and is likely to be a critical component of an effective vaccine against AIDS. Although monomeric HIV envelope subunit vaccines (gp120) have induced high-titer antibody responses and neutralizing antibodies against laboratory-adapted HIV-1 strains, they have failed to induce neutralizing antibodies against diverse heterologous primary HIV isolates. Most probably, the reason for this failure is that the antigenic structure(s) of these previously used immunogens does not mimic that of the functional HIV envelope, which is a trimer, and thus these immunogens do not elicit high titers of relevant functional antibodies. We recently reported that an Env glycoprotein immunogen (o-gp140SF162ΔV2) containing a partial deletion in the second variable loop (V2) derived from the R5-tropic HIV-1 isolate SF162, when used in a DNA priming-protein boosting vaccine regimen in rhesus macaques, induced neutralizing antibodies against heterologous subtype B primary isolates as well as protection to the vaccinated animals upon challenge with pathogenic SHIVSF162P4 virus. Here we describe the purification of this protein to homogeneity, its characterization as trimer, and its ability to induce primary isolate-neutralizing responses in rhesus macaques. Optimal mutations in the primary and secondary protease cleavage sites of the env gene were identified that resulted in the stable secretion of a trimeric Env glycoprotein in mammalian cell cultures. We determined the molecular mass and hydrodynamic radius (Rh) using a triple detector analysis (TDA) system. The molecular mass of the oligomer was found to be 324 kDa, close to the expected Mw of a HIV envelope trimer protein (330 kDa), and the hydrodynamic radius was 7.27 nm. Negative staining electron microscopy of o-gp140SF162ΔV2 showed that it is a trimer with considerable structural flexibility and supported the data obtained by TDA. The structural integrity of the purified trimeric protein was also confirmed by determinations of its ability to bind the HIV receptor, CD4, and its ability to bind a panel of well-characterized neutralizing monoclonal antibodies. No deleterious effect of V2 loop deletion was observed on the structure and conformation of the protein, and several critical neutralization epitopes were preserved and well exposed on the purified o-gp140SF162ΔV2 protein. In an intranasal priming and intramuscular boosting regimen, this protein induced high titers of functional antibodies, which neutralized the vaccine strain, i.e., SF162. These results highlight a potential role for the trimeric o-gp140SF162ΔV2 Env immunogen in a successful HIV vaccine.


Proceedings of the National Academy of Sciences of the United States of America | 2008

Structure and specificity of lamprey monoclonal antibodies

Brantley R. Herrin; Matthew N. Alder; Kenneth H. Roux; Christina Sina; Götz R. A. Ehrhardt; Jeremy A. Boydston; Charles L. Turnbough; Max D. Cooper

Adaptive immunity in jawless vertebrates (lamprey and hagfish) is mediated by lymphocytes that undergo combinatorial assembly of leucine-rich repeat (LRR) gene segments to create a diverse repertoire of variable lymphocyte receptor (VLR) genes. Immunization with particulate antigens induces VLR-B-bearing lymphocytes to secrete antigen-specific VLR-B antibodies. Here, we describe the production of recombinant VLR-B antibodies specific for BclA, a major coat protein of Bacillus anthracis spores. The recombinant VLR-B antibodies possess 8–10 uniform subunits that collectively bind antigen with high avidity. Sequence analysis, mutagenesis, and modeling studies show that antigen binding involves residues in the β-sheets lining the VLR-B concave surface. EM visualization reveals tetrameric and pentameric molecules having a central core and highly flexible pairs of stalk-region “arms” with antigen-binding “hands.” Remarkable antigen-binding specificity, avidity, and stability predict that these unusual LRR-based monoclonal antibodies will find many biomedical uses.


Malaria Journal | 2008

Cytokine-associated neutrophil extracellular traps and antinuclear antibodies in Plasmodium falciparum infected children under six years of age

Virginia S Baker; Godwin E. Imade; Norman B Molta; Pallavi Tawde; Sunday D. Pam; Michael O Obadofin; Soloman A Sagay; Daniel Z. Egah; Daniel Iya; Bangmboye B Afolabi; Murray Baker; Karen Ford; Robert Ford; Kenneth H. Roux; Thomas C. S. Keller

BackgroundIn Plasmodium falciparum-infected children, the relationships between blood cell histopathology, blood plasma components, development of immunocompetence and disease severity remain poorly understood. Blood from Nigerian children with uncomplicated malaria was analysed to gain insight into these relationships. This investigation presents evidence for circulating neutrophil extracellular traps (NETs) and antinuclear IgG antibodies (ANA). The presence of NETs and ANA to double-stranded DNA along with the cytokine profiles found suggests autoimmune mechanisms that could produce pathogenesis in children, but immunoprotection in adults.MethodsPeripheral blood smear slides and blood samples obtained from 21 Nigerian children under six years of age, presenting with uncomplicated malaria before and seven days after initiation of sulphadoxine-pyrimethamine (SP) treatment were analysed. The slides were stained with Giemsa and with DAPI. Levels of the pro-inflammatory cytokines IFN-γ, IL-2, TNF, CRP, and IL-6, select anti-inflammatory cytokines TGF-β and IL-10, and ANA were determined by immunoassay.ResultsThe children exhibited circulating NETs with adherent parasites and erythrocytes, elevated ANA levels, a Th2 dominated cytokine profile, and left-shifted leukocyte differential counts. Nonspecific ANA levels were significant in 86% of the children pretreatment and in 100% of the children seven days after SP treatment, but in only 33% of age-matched control samples collected during the season of low parasite transmission. Levels of ANA specific for dsDNA were significant in 81% of the children both pre-treatment and post treatment.ConclusionThe results of this investigation suggest that NET formation and ANA to dsDNA may induce pathology in falciparum-infected children, but activate a protective mechanism against falciparum malaria in adults. The significance of in vivo circulating chromatin in NETs and dsDNA ANA as a causative factor in the hyporesponsiveness of CpG oligonucleotide-based malaria vaccines is discussed.


International Archives of Allergy and Immunology | 2003

Ana o 2, a Major Cashew (Anacardium occidentale L.) Nut Allergen of the Legumin Family

Fang Wang; Jason M. Robotham; Suzanne S. Teuber; Shridhar K. Sathe; Kenneth H. Roux

Background: We recently cloned and described a vicilin and showed it to be a major cashew allergen. Additional IgE-reactive cashew peptides of the legumin group and 2S albumin families have also been reported. Here, we attempt to clone, express and characterize a second major cashew allergen. Methods: A cashew cDNA library was screened with human IgE and rabbit IgG anti-cashew extract antisera, and a reactive nonvicilin clone was sequenced and expressed as a fusion protein in Escherichia coli. Immunoblotting was used to screen for reactivity with patients’ sera, and inhibition of immunoblotting was used to identify the corresponding native peptides in cashew nut extract. The identified allergen was subjected to linear epitope mapping using SPOTs solid-phase synthetic peptide technology. Results: Sequence analysis showed the selected clone, designated Ana o 2, to encode for a member of the legumin family (an 11S globulin) of seed storage proteins. By IgE immunoblotting, 13 of 21 sera (62%) from cashew-allergic patients were reactive. Immunoblot inhibition data showed that the native Ana o 2 constitutes a major band at approximately 33 kD and a minor band at approximately 53 kD. Probing of overlapping synthetic peptides with pooled human cashew-allergic sera identified 22 reactive peptides, 7 of which gave strong signals. Several Ana o 2 epitopes were shown to overlap those of the peanut legumin group allergen, Ara h 3, in position but with little sequence similarity. Greater positional overlap and identity was observed between Ana o 2 and soybean glycinin epitopes. Conclusions: We conclude that this legumin-like protein is a major allergen in cashew nut.

Collaboration


Dive into the Kenneth H. Roux's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Ping Zhu

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Mengna Su

Florida State University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Fang Wang

Florida State University

View shared research outputs
Researchain Logo
Decentralizing Knowledge