Kenneth Jeff Thrasher
Eli Lilly and Company
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Kenneth Jeff Thrasher.
Bioorganic & Medicinal Chemistry Letters | 1994
Mitchell I. Steinberg; Alan David Palkowitz; Kenneth Jeff Thrasher; Jon K. Reel; Karen M. Zimmerman; Celia A. Whitesitt; Richard Lee Simon; Kenneth Lee Hauser; Sherryl Lynn Lifer; William Pfeifer; Kumiko Takeuchi; Sally A. Wiest; Venkatraghavan Vasudevan; K.G. Bermis; Jack B. Deeter; C.J. Barnett; T.M. Wilson; Winston S. Marshall; Donald B. Boyd
Abstract The synthesis and in vitro biological evaluation of a novel series of diastereomeric phenoxyproline octanoamides ( 3–h ) as angiotensin II (AT 1 ) receptor antagonists are reported.
Journal of Medicinal Chemistry | 2017
Kevin Robert Fales; F. George Njoroge; Harold B. Brooks; Stefan J. Thibodeaux; Alicia Torrado; Chong Si; James Lee Toth; Jefferson R. Mc Cowan; Kenneth D. Roth; Kenneth Jeff Thrasher; Kwame Frimpong; Matthew R. Lee; Robert Dean Dally; Timothy Alan Shepherd; Timothy B. Durham; Brandon J. Margolis; Zhipei Wu; Yong Wang; Shane Atwell; Jing Wang; Yu-Hua Hui; Timothy I. Meier; Susan A. Konicek; Sandaruwan Geeganage
A hallmark of cancer is unbridled proliferation that can result in increased demand for de novo synthesis of purine and pyrimidine bases required for DNA and RNA biosynthesis. These synthetic pathways are frequently upregulated in cancer and involve various folate-dependent enzymes. Antifolates have a proven record as clinically used oncolytic agents. Our recent research efforts have produced LSN 3213128 (compound 28a), a novel, selective, nonclassical, orally bioavailable antifolate with potent and specific inhibitory activity for aminoimidazole-4-carboxamide ribonucleotide formyltransferase (AICARFT), an enzyme in the purine biosynthetic pathway. Inhibition of AICARFT with compound 28a results in dramatic elevation of 5-aminoimidazole 4-carboxamide ribonucleotide (ZMP) and growth inhibition in NCI-H460 and MDA-MB-231met2 cancer cell lines. Treatment with this inhibitor in a murine based xenograft model of triple negative breast cancer (TNBC) resulted in tumor growth inhibition.
Scientific Reports | 2018
Harold B. Brooks; Timothy I. Meier; Sandaruwan Geeganage; Kevin Robert Fales; Kenneth Jeff Thrasher; Susan A. Konicek; Charles D. Spencer; Stefan J. Thibodeaux; Robert Foreman; Yu-Hua Hui; Kenneth D. Roth; Yue-Wei Qian; Tao Wang; Shuang Luo; Alicia Torrado; Chong Si; James Lee Toth; Jefferson R. Mc Cowan; Kwame Frimpong; Matthew R. Lee; Robert Dean Dally; Timothy Alan Shepherd; Timothy B. Durham; Yong Wang; Zhipei Wu; Philip W. Iversen; F. George Njoroge
AICARFT is a folate dependent catalytic site within the ATIC gene, part of the purine biosynthetic pathway, a pathway frequently upregulated in cancers. LSN3213128 is a potent (16 nM) anti-folate inhibitor of AICARFT and selective relative to TS, SHMT1, MTHFD1, MTHFD2 and MTHFD2L. Increases in ZMP, accompanied by activation of AMPK and cell growth inhibition, were observed with treatment of LY3213128. These effects on ZMP and proliferation were dependent on folate levels. In human breast MDA-MB-231met2 and lung NCI-H460 cell lines, growth inhibition was rescued by hypoxanthine, but not in the A9 murine cell line which is deficient in purine salvage. In athymic nude mice, LSN3213128 robustly elevates ZMP in MDA-MB-231met2, NCI-H460 and A9 tumors in a time and dose dependent manner. Significant tumor growth inhibition in human breast MDA-MB231met2 and lung NCI-H460 xenografts and in the syngeneic A9 tumor model were observed with oral administration of LSN3213128. Strikingly, AMPK appeared activated within the tumors and did not change even at high levels of intratumoral ZMP after weeks of dosing. These results support the evaluation of LSN3213128 as an antineoplastic agent.
Journal of Medicinal Chemistry | 1997
Alan David Palkowitz; Andrew Lawrence Glasebrook; Kenneth Jeff Thrasher; Kenneth Lee Hauser; Lorri L. Short; D. L. Phillips; Brian Stephen Muehl; Masahiko Sato; Pamela K. Shetler; George Joseph Cullinan; T. R. Pell; Henry U. Bryant
Journal of Medicinal Chemistry | 1997
Daniel Jon Sall; Jolie Anne Bastian; Stephen L. Briggs; John A. Buben; Nickolay Y. Chirgadze; David K. Clawson; Michael L. Denney; Deborah D. Giera; Donetta S. Gifford-Moore; Richard Waltz Harper; Kenneth Lee Hauser; Valentine J. Klimkowski; Todd J. Kohn; Ho-Shen Lin; Jefferson R. McCowan; Alan David Palkowitz; Gerald F. Smith; Kumiko Takeuchi; Kenneth Jeff Thrasher; Jennifer M. Tinsley; Barbara G. Utterback; Sau-Chi B. Yan; Minsheng Zhang
Journal of Medicinal Chemistry | 1991
Melvin J. Yu; Kenneth Jeff Thrasher; Jefferson R. McCowan; Norman R. Mason; L. G. Mendelsohn
Archive | 2001
Jeffrey Alan Dodge; Britta Evers; Louis Nickolaus Jungheim; Brian Stephen Muehl; Gerd Ruehter; Kenneth Jeff Thrasher
Journal of Medicinal Chemistry | 1994
Alan David Palkowitz; Mitchell I. Steinberg; Kenneth Jeff Thrasher; Jon K. Reel; Kenneth Lee Hauser; Karen M. Zimmerman; Sally A. Wiest; Celia A. Whitesitt; Richard Lee Simon; William Pfeifer
Archive | 2004
Robert Jason Herr; Louis Nickolaus Jungheim; John Mcneill Mcgill; Kenneth Jeff Thrasher; Muralikrishna Valluri
Archive | 1997
Thomas Alan Crowell; Deborah Ann Evrard; Charles David Jones; Brian Stephen Muehl; Christopher John Rito; Anthony J. Shuker; Andrew John Thorpe; Kenneth Jeff Thrasher