Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Kenneth K. Chan is active.

Publication


Featured researches published by Kenneth K. Chan.


Proceedings of the National Academy of Sciences of the United States of America | 2007

MicroRNA-29 family reverts aberrant methylation in lung cancer by targeting DNA methyltransferases 3A and 3B

Muller Fabbri; Ramiro Garzon; Amelia Cimmino; Zhongfa Liu; Nicola Zanesi; Elisa Callegari; Shujun Liu; Hansjuerg Alder; Stefan Costinean; Cecilia Fernandez-Cymering; Stefano Volinia; Gulnur Guler; Carl Morrison; Kenneth K. Chan; Guido Marcucci; George A. Calin; Kay Huebner; Carlo M. Croce

MicroRNAs (miRNAs) are small, noncoding RNAs that regulate expression of many genes. Recent studies suggest roles of miRNAs in carcinogenesis. We and others have shown that expression profiles of miRNAs are different in lung cancer vs. normal lung, although the significance of this aberrant expression is poorly understood. Among the reported down-regulated miRNAs in lung cancer, the miRNA (miR)-29 family (29a, 29b, and 29c) has intriguing complementarities to the 3′-UTRs of DNA methyltransferase (DNMT)3A and -3B (de novo methyltransferases), two key enzymes involved in DNA methylation, that are frequently up-regulated in lung cancer and associated with poor prognosis. We investigated whether miR-29s could target DNMT3A and -B and whether restoration of miR-29s could normalize aberrant patterns of methylation in non-small-cell lung cancer. Here we show that expression of miR-29s is inversely correlated to DNMT3A and -3B in lung cancer tissues, and that miR-29s directly target both DNMT3A and -3B. The enforced expression of miR-29s in lung cancer cell lines restores normal patterns of DNA methylation, induces reexpression of methylation-silenced tumor suppressor genes, such as FHIT and WWOX, and inhibits tumorigenicity in vitro and in vivo. These findings support a role of miR-29s in epigenetic normalization of NSCLC, providing a rationale for the development of miRNA-based strategies for the treatment of lung cancer.


Proceedings of the National Academy of Sciences of the United States of America | 2010

Clinical response and miR-29b predictive significance in older AML patients treated with a 10-day schedule of decitabine

William Blum; Ramiro Garzon; Rebecca B. Klisovic; Sebastian Schwind; Alison Walker; Susan Geyer; Shujun Liu; Violaine Havelange; Heiko Becker; Larry J. Schaaf; Jon Mickle; Hollie Devine; Cheryl Kefauver; Steven M. Devine; Kenneth K. Chan; Nyla A. Heerema; Clara D. Bloomfield; Michael R. Grever; John C. Byrd; Miguel A. Villalona-Calero; Carlo M. Croce; Guido Marcucci

A phase II clinical trial with single-agent decitabine was conducted in older patients (≥60 years) with previously untreated acute myeloid leukemia (AML) who were not candidates for or who refused intensive chemotherapy. Subjects received low-dose decitabine at 20 mg/m2 i.v. over 1 h on days 1 to 10. Fifty-three subjects enrolled with a median age of 74 years (range, 60–85). Nineteen (36%) had antecedent hematologic disorder or therapy-related AML; 16 had complex karyotypes (≥3 abnormalities). The complete remission rate was 47% (n = 25), achieved after a median of three cycles of therapy. Nine additional subjects had no morphologic evidence of disease with incomplete count recovery, for an overall response rate of 64% (n = 34). Complete remission was achieved in 52% of subjects presenting with normal karyotype and in 50% of those with complex karyotypes. Median overall and disease-free survival durations were 55 and 46 weeks, respectively. Death within 30 days of initiation of treatment occurred in one subject (2%), death within 8 weeks in 15% of subjects. Given the DNA hypomethylating effect of decitabine, we examined the relationship of clinical response and pretreatment level of miR-29b, previously shown to target DNA methyltransferases. Higher levels of miR-29b were associated with clinical response (P = 0.02). In conclusion, this schedule of decitabine was highly active and well tolerated in this poor-risk cohort of older AML patients. Levels of miR-29b should be validated as a predictive factor for stratification of older AML patients to decitabine treatment.


Journal of Clinical Oncology | 2007

Phase I Study of Decitabine Alone or in Combination With Valproic Acid in Acute Myeloid Leukemia

William Blum; Rebecca B. Klisovic; Bjoern Hackanson; Zhongfa Liu; Shujun Liu; Hollie Devine; Tamara Vukosavljevic; Lenguyen Huynh; Gerard Lozanski; Cheryl Kefauver; Christoph Plass; Steven M. Devine; Nyla A. Heerema; Anthony Murgo; Kenneth K. Chan; Michael R. Grever; John C. Byrd; Guido Marcucci

PURPOSE To determine an optimal biologic dose (OBD) of decitabine as a single agent and then the maximum-tolerated dose (MTD) of valproic acid (VA) combined with decitabine in acute myeloid leukemia (AML). PATIENTS AND METHODS Twenty-five patients (median age, 70 years) were enrolled; 12 were untreated and 13 had relapsed AML. To determine an OBD (based on a gene re-expression end point), 14 patients received decitabine alone for 10 days. To determine the MTD, 11 patients received decitabine (at OBD, days 1 through 10) plus dose-escalating VA (days 5 through 21). RESULTS The OBD of decitabine was 20 mg/m(2)/d intravenously, with limited nonhematologic toxicity. In patients treated with decitabine plus VA, dose-limiting encephalopathy occurred in two of two patients at VA 25 mg/kg/d and one of six patients at VA 20 mg/kg/d. Drug-induced re-expression of estrogen receptor (ER) was associated with clinical response (P < or = .05). ER promoter demethylation, global DNA hypomethylation, depletion of DNA methyltransferase enzyme, and histone hyperacetylation were also observed. In an intent-to-treat analysis, the response rate was 44% (11 of 25). Of 21 assessable patients, 11 (52%) responded: four with morphologic and cytogenetic complete remission (CR; each had complex karyotype), four with incomplete CR, and three with partial remission. In untreated AML, four of nine assessable patients achieved CR. Clinical responses appeared similar for decitabine alone or with VA. CONCLUSION Low-dose decitabine was safe and showed encouraging clinical and biologic activity in AML, but the addition of VA led to encephalopathy at relatively low doses. On the basis of these results, additional studies of decitabine (20 mg/m(2)/d for 10 days) alone or with an alternative deacetylating agent are warranted.


Bioorganic & Medicinal Chemistry Letters | 2009

Curcumin is a potent DNA hypomethylation agent

Zhongfa Liu; Zhiliang Xie; William P. Jones; Ryan E. Pavlovicz; Shujun Liu; Jianhua Yu; Pui Kai Li; Jiayuh Lin; Jame R. Fuchs; Guido Marcucci; Chenglong Li; Kenneth K. Chan

Molecular docking of the interaction of curcumin and DNMT1 suggested that curcumin covalently blocks the catalytic thiolate of C1226 of DNMT1 to exert its inhibitory effect. This was validated by showing that curcumin inhibits the activity of M. SssI with an IC(50) of 30 nM, but no inhibitory activity of hexahydrocurcumin up to 100 microM. In addition, curcumin can induce global DNA hypomethylation in a leukemia cell line.


Cancer Cell | 2010

Sp1/NFκB/HDAC/miR-29b Regulatory Network in KIT-Driven Myeloid Leukemia

Shujun Liu; Lai-Chu Wu; Jiuxia Pang; Ramasamy Santhanam; Sebastian Schwind; Yue Zhong Wu; Christopher Hickey; Jianhua Yu; Heiko Becker; Kati Maharry; Michael D. Radmacher; Chenglong Li; Susan P. Whitman; Anjali Mishra; Nicole Stauffer; Anna M. Eiring; Roger Briesewitz; Robert A. Baiocchi; Kenneth K. Chan; Peter Paschka; Michael A. Caligiuri; John C. Byrd; Carlo M. Croce; Clara D. Bloomfield; Danilo Perrotti; Ramiro Garzon; Guido Marcucci

The biologic and clinical significance of KIT overexpression that associates with KIT gain-of-function mutations occurring in subsets of acute myeloid leukemia (AML) (i.e., core binding factor AML) is unknown. Here, we show that KIT mutations lead to MYC-dependent miR-29b repression and increased levels of the miR-29b target Sp1 in KIT-driven leukemia. Sp1 enhances its own expression by participating in a NFkappaB/HDAC complex that further represses miR-29b transcription. Upregulated Sp1 then binds NFkappaB and transactivates KIT. Therefore, activated KIT ultimately induces its own transcription. Our results provide evidence that the mechanisms of Sp1/NFkappaB/HDAC/miR-29b-dependent KIT overexpression contribute to leukemia growth and can be successfully targeted by pharmacological disruption of the Sp1/NFkappaB/HDAC complex or synthetic miR-29b treatment in KIT-driven AML.


Leukemia | 2003

Depsipeptide (FR 901228) promotes histone acetylation, gene transcription, apoptosis and its activity is enhanced by DNA methyltransferase inhibitors in AML1/ETO-positive leukemic cells.

Marko I. Klisovic; E. A. Maghraby; Mark R. Parthun; M. Guimond; A. R. Sklenar; Susan P. Whitman; Kenneth K. Chan; T. Murphy; J. Anon; Kellie J. Archer; Laura J. Rush; Christoph Plass; Michael R. Grever; John C. Byrd; Guido Marcucci

In t(8;21) acute myeloid leukemia (AML), the AML1/ETO fusion protein promotes leukemogenesis by recruiting histone deacetylase (HDAC) and silencing AML1target genes important for hematopoietic differentiation. We hypothesized that depsipeptide (FR901228), a novel HDAC inhibitor evaluated in ongoing clinical trials, restores gene transcription and cell differentiation in AML1/ETO-positive cells. A dose-dependent increase in H3 and H4 histone acetylation was noted in depsipeptide-treated AML1/ETO-positive Kasumi-1 cells and blasts from a patient with t(8;21) AML. Consistent with this biological effect, we also showed a dose-dependent increase in cytotoxicity, expression of IL-3, here used as read-out for silenced AML1-target genes, upregulation of CD11b with other morphologic changes suggestive of partial cell differentiation in Kasumi-1 cells. Some of these biologic effects were also attained in other myeloid leukemia cell lines, suggesting that depsipeptide has differentiation and cytotoxic activity in AML cells, regardless of the underlying genomic abnormality. Notably, the activity of depsipeptide was enhanced by 5-aza-2′-deoxycytidine, a DNA methyltransferase inhibitor (DNMT). These two agents in combination resulted in enhanced histone acetylation, IL-3 expression, and cytotoxicity, suggesting HDAC and DNMT activities as a potential dual target in future therapeutic strategies for AML1/ETO and other molecular subgroups of AML.


Journal of Clinical Oncology | 2005

Phase I Study of Oblimersen Sodium, an Antisense to Bcl-2, in Untreated Older Patients With Acute Myeloid Leukemia: Pharmacokinetics, Pharmacodynamics, and Clinical Activity

Guido Marcucci; Wendy Stock; Guowei Dai; Rebecca B. Klisovic; Shujun Liu; Marko I. Klisovic; William Blum; Cheryl Kefauver; Dorie Sher; Margaret Green; Mollie E. Moran; Kati Maharry; Steven Novick; Clara D. Bloomfield; James A. Zwiebel; Richard A. Larson; Michael R. Grever; Kenneth K. Chan; John C. Byrd

PURPOSES Pharmacologic downregulation of Bcl-2, an antiapoptotic protein overexpressed in cancer, might increase chemosensitivity in acute myeloid leukemia (AML). Herein, we investigated the feasibility of this approach in untreated elderly AML patients by administering oblimersen sodium (G3139), an 18-mer phosphorothioate antisense to Bcl-2, during induction and consolidation treatments. PATIENTS AND METHODS Untreated patients with primary or secondary AML (stratified to cohort 1 or 2, respectively) who were > or = 60 years received induction with G3139, cytarabine, and daunorubicin at one of two different dose levels (45 and 60 mg/m2) and, on achievement of complete remission (CR), consolidation with G3139 and high-dose cytarabine. An enzyme-linked immunosorbent assay (ELISA)-based assay was used to measure plasma and intracellular concentrations (IC) of G3139. Bcl-2 mRNA and protein levels were quantified by real-time reverse transcriptase polymerase chain reaction and ELISA, respectively, in bone marrow samples collected before induction treatment and after 72 hours of G3139 infusion, prior to initiation of chemotherapy. RESULTS Of the 29 treated patients, 14 achieved CR. With a median follow-up of 12.6 months, seven patients had relapsed. Side effects of this combination were similar to those expected with chemotherapy alone and were not dose limiting at both dose levels. After 72-hour G3139 infusion, Bcl-2/ABL mRNA copies were decreased compared with baseline (P = .03) in CR patients and increased in nonresponders (NRs; P = .05). Changes in Bcl-2 protein showed a similar trend. Although plasma pharmacokinetics did not correlate with disease response, the median IC of the antisense was higher in the CR patients compared with NRs (17.0 v 4.4 pmol/mg protein, respectively; P = .05). CONCLUSION G3139 can be administered safely in combination with intensive chemotherapy, and the degree of Bcl-2 downmodulation may correlate with response to therapy.


Clinical Cancer Research | 2013

Targeted Delivery of microRNA-29b by Transferrin-Conjugated Anionic Lipopolyplex Nanoparticles: A Novel Therapeutic Strategy in Acute Myeloid Leukemia

Xiaomeng Huang; Sebastian Schwind; Bo Yu; Ramasamy Santhanam; Hongyan Wang; Pia Hoellerbauer; Alice S. Mims; Rebecca B. Klisovic; Alison Walker; Kenneth K. Chan; William Blum; Danilo Perrotti; John C. Byrd; Clara D. Bloomfield; Michael A. Caligiuri; Robert J. Lee; Ramiro Garzon; Natarajan Muthusamy; Ly James Lee; Guido Marcucci

Purpose: miR-29b directly or indirectly targets genes involved in acute myeloid leukemia (AML), namely, DNMTs, CDK6, SP1, KIT, and FLT3. Higher miR-29b pretreatment expression is associated with improved response to decitabine and better outcome in AML. Thus, designing a strategy to increase miR-29b levels in AML blasts may be of therapeutic value. However, free synthetic miRs are easily degraded in bio-fluids and have limited cellular uptake. To overcome these limitations, we developed a novel transferrin-conjugated nanoparticle delivery system for synthetic miR-29b (Tf-NP-miR-29b). Experimental Design: Delivery efficiency was investigated by flow cytometry, confocal microscopy, and quantitative PCR. The expression of miR-29b targets was measured by immunoblotting. The antileukemic activity of Tf-NP-miR-29b was evaluated by measuring cell proliferation and colony formation ability and in a leukemia mouse model. Results: Tf-NP-miR-29b treatment resulted in more than 200-fold increase of mature miR-29b compared with free miR-29b and was approximately twice as efficient as treatment with non-transferrin–conjugated NP-miR-29b. Tf-NP-miR-29b treatment significantly downregulated DNMTs, CDK6, SP1, KIT, and FLT3 and decreased AML cell growth by 30% to 50% and impaired colony formation by approximately 50%. Mice engrafted with AML cells and then treated with Tf-NP-miR-29b had significantly longer survival compared with Tf-NP-scramble (P = 0.015) or free miR-29b (P = 0.003). Furthermore, priming AML cell with Tf-NP-miR-29b before treatment with decitabine resulted in marked decrease in cell viability in vitro and showed improved antileukemic activity compared with decitabine alone (P = 0.001) in vivo. Conclusions: Tf-NP effectively delivered functional miR-29b, resulting in target downregulation and antileukemic activity and warrants further investigation as a novel therapeutic approach in AML. Clin Cancer Res; 19(9); 2355–67. ©2013 AACR.


Mutation Research | 2002

Arylamine exposures and bladder cancer risk

Mimi C. Yu; Paul L. Skipper; Steven R. Tannenbaum; Kenneth K. Chan; Ronald K. Ross

Occupational exposure to arylamines in industrial settings was the first known cause of bladder cancer in humans. In the United States and many developed countries, these industrial dyes have been under strict government control for decades and are believed to contribute minimally to todays population burden of bladder cancer in the West. The two other recognized, and potentially substantial sources of human exposure to arylamines are cigarette smoking and use of hair dyes. This paper reviews the latest epidemiologic findings on the relationships between smoking, hair dye use and bladder cancer risk. Results support the notion that arylamines contained in cigarette smoke and permanent hair dyes are human carcinogens. Furthermore, women may experience higher bladder cancer risk than men from comparable arylamine exposure, possibly due in part to womens higher propensity for arylamine activation relative to men.


Blood | 2012

Clinical and pharmacodynamic activity of bortezomib and decitabine in acute myeloid leukemia

William Blum; Sebastian Schwind; Somayeh S. Tarighat; Susan Geyer; Ann-Kathrin Eisfeld; Susan P. Whitman; Alison Walker; Rebecca B. Klisovic; John C. Byrd; Ramasamy Santhanam; Hongyan Wang; John Curfman; Steven M. Devine; Samson T. Jacob; Celia Garr; Cheryl Kefauver; Danilo Perrotti; Kenneth K. Chan; Clara D. Bloomfield; Michael A. Caligiuri; Michael R. Grever; Ramiro Garzon; Guido Marcucci

We recently reported promising clinical activity for a 10-day regimen of decitabine in older AML patients; high miR-29b expression associated with clinical response. Subsequent preclinical studies with bortezomib in AML cells have shown drug-induced miR-29b up-regulation, resulting in loss of transcriptional activation for several genes relevant to myeloid leukemogenesis, including DNA methyltransferases and receptor tyrosine kinases. Thus, a phase 1 trial of bortezomib and decitabine was developed. Nineteen poor-risk AML patients (median age 70 years; range, 32-84 years) enrolled. Induction with decitabine (20 mg/m(2) intravenously on days 1-10) plus bortezomib (escalated up to the target 1.3 mg/m(2) on days 5, 8, 12, and 15) was tolerable, but bortezomib-related neuropathy developed after repetitive cycles. Of previously untreated patients (age ≥ 65 years), 5 of 10 had CR (complete remission, n = 4) or incomplete CR (CRi, n = 1); 7 of 19 overall had CR/CRi. Pharmacodynamic analysis showed FLT3 down-regulation on day 26 of cycle 1 (P = .02). Additional mechanistic studies showed that FLT3 down-regulation was due to bortezomib-induced miR-29b up-regulation; this led to SP1 down-regulation and destruction of the SP1/NF-κB complex that transactivated FLT3. This study demonstrates the feasibility and preliminary clinical activity of decitabine plus bortezomib in AML and identifies FLT3 as a novel pharmacodynamic end point for future trials.

Collaboration


Dive into the Kenneth K. Chan's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Shujun Liu

University of Minnesota

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge