Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Kenneth K.W. To is active.

Publication


Featured researches published by Kenneth K.W. To.


Cancer Research | 2010

Apatinib (YN968D1) reverses multidrug resistance by inhibiting the efflux function of multiple ATP-binding cassette transporters

Yan Jun Mi; Yong Ju Liang; Hong Bing Huang; Hong Yun Zhao; Chung Pu Wu; Fang Wang; Li Yang Tao; Chuan Zhao Zhang; Chun Ling Dai; Amit K. Tiwari; Xiao Xu Ma; Kenneth K.W. To; Suresh V. Ambudkar; Zhe-Sheng Chen; Li Wu Fu

Apatinib, a small-molecule multitargeted tyrosine kinase inhibitor, is in phase III clinical trial for the treatment of patients with non-small-cell lung cancer and gastric cancer in China. In this study, we determined the effect of apatinib on the interaction of specific antineoplastic compounds with P-glycoprotein (ABCB1), multidrug resistance protein 1 (MRP1, ABCC1), and breast cancer resistance protein (BCRP, ABCG2). Our results showed that apatinib significantly enhanced the cytotoxicity of ABCB1 or ABCG2 substrate drugs in KBv200, MCF-7/adr, and HEK293/ABCB1 cells overexpressing ABCB1 and in S1-M1-80, MCF-7/FLV1000, and HEK293/ABCG2-R2 cells overexpressing ABCG2 (wild-type). In contrast, apatinib did not alter the cytotoxicity of specific substrates in the parental cells and cells overexpressing ABCC1. Apatinib significantly increased the intracellular accumulation of rhodamine 123 and doxorubicin in the multidrug resistance (MDR) cells. Furthermore, apatinib significantly inhibited the photoaffinity labeling of both ABCB1 and ABCG2 with [(125)I]iodoarylazidoprazosin in a concentration-dependent manner. The ATPase activity of both ABCB1 and ABCG2 was significantly increased by apatinib. However, apatinib, at a concentration that produced a reversal of MDR, did not significantly alter the ABCB1 or ABCG2 protein or mRNA expression levels or the phosphorylation of AKT and extracellular signal-regulated kinase 1/2 (ERK1/2). Importantly, apatinib significantly enhanced the effect of paclitaxel against the ABCB1-resistant KBv200 cancer cell xenografts in nude mice. In conclusion, apatinib reverses ABCB1- and ABCG2-mediated MDR by inhibiting their transport function, but not by blocking the AKT or ERK1/2 pathway or downregulating ABCB1 or ABCG2 expression. Apatinib may be useful in circumventing MDR to other conventional antineoplastic drugs.


Molecular and Cellular Biology | 2008

Regulation of ABCG2 Expression at the 3′ Untranslated Region of Its mRNA through Modulation of Transcript Stability and Protein Translation by a Putative MicroRNA in the S1 Colon Cancer Cell Line

Kenneth K.W. To; Zhirong Zhan; Thomas Litman; Susan E. Bates

ABSTRACT ABCG2 is recognized as an important efflux transporter in clinical pharmacology and is potentially important in resistance to chemotherapeutic drugs. To identify epigenetic mechanisms regulating ABCG2 mRNA expression at its 3′ untranslated region (3′UTR), we performed 3′ rapid amplification of cDNA ends with the S1 parental colon cancer cell line and its drug-resistant ABCG2-overexpressing counterpart. We found that the 3′UTR is >1,500 bp longer in parental cells and, using the miRBase TARGETs database, identified a putative microRNA (miRNA) binding site, distinct from the recently reported hsa-miR520h site, in the portion of the 3′UTR missing from ABCG2 mRNA in the resistant cells. We hypothesized that the binding of a putative miRNA at the 3′UTR of ABCG2 suppresses the expression of ABCG2. In resistant S1MI80 cells, the miRNA cannot bind to ABCG2 mRNA because of the shorter 3′UTR, and thus, mRNA degradation and/or repression on protein translation is relieved, contributing to overexpression of ABCG2. This hypothesis was rigorously tested by reporter gene assays, mutational analysis at the miRNA binding sites, and forced expression of miRNA inhibitors or mimics. The removal of this epigenetic regulation by miRNA could be involved in the overexpression of ABCG2 in drug-resistant cancer cells.


Molecular Cancer Research | 2008

Histone modifications at the ABCG2 promoter following treatment with histone deacetylase inhibitor mirror those in multidrug-resistant cells.

Kenneth K.W. To; Orsolya Polgar; Lyn M. Huff; Kuniaki Morisaki; Susan E. Bates

ABCG2 is a ubiquitous ATP-binding cassette transmembrane protein that is important in pharmacology and may play a role in stem cell biology and clinical drug resistance. To study the mechanism(s) regulating ABCG2 expression, we used ChIP to investigate the levels of acetylated histone H3, histone deacetylases (HDAC), histone acetyltransferases, and other transcription regulatory proteins associated with the ABCG2 promoter. Following selection for drug resistance and the subsequent overexpression of ABCG2, an increase in acetylated histone H3 but a decrease in class I HDACs associated with the ABCG2 promoter was observed. Permissive histone modifications, including an increase in histone H3 lysine 4 trimethylation (Me3-K4 H3) and histone H3 serine 10 phosphorylation (P-S10 H3), were observed accompanying development of the resistance phenotype. These changes mirrored those in some cell lines treated with a HDAC inhibitor, romidepsin. A repressive histone mark, trimethylated histone H3 lysine 9 (Me3-K9 H3), was found in untreated parental cells and cells that did not respond to HDAC inhibition with ABCG2 up-regulation. Interestingly, although all five studied cell lines showed global histone acetylation and MDR1 up-regulation upon HDAC inhibition, only those cells with removal of the repressive mark, and recruitment of RNA polymerase II and a chromatin remodeling factor Brg-1 from the ABCG2 promoter, showed increased ABCG2 expression. In the remaining cell lines, HDAC1 binding in association with the repressive Me3-K9 H3 mark apparently constrains the effect of HDAC inhibition on ABCG2 expression. These studies begin to address the differential effect of HDAC inhibitors widely observed in gene expression studies. (Mol Cancer Res 2008;6(1):151–64)


Molecular Cancer Therapeutics | 2009

Escape from hsa-miR-519c enables drug-resistant cells to maintain high expression of ABCG2

Kenneth K.W. To; Robert W. Robey; Turid Knutsen; Zhirong Zhan; Thomas Ried; Susan E. Bates

Overexpression of ABCG2 has been reported in cell lines selected for drug resistance and it is widely believed to be important in the clinical pharmacology of anticancer drugs. We and others have previously identified and validated two microRNAs (miRNA; hsa-miR-519c and hsa-miR-520h) targeting ABCG2. In this study, the shortening of the ABCG2 3′ untranslated region (3′UTR) was found to be a common phenomenon in several ABCG2-overexpressing resistant cell lines, which as a result removes the hsa-miR-519c binding site and its repressive effects on mRNA stability and translation blockade, thereby contributing to drug resistance. On the other hand, reduced expression of hsa-miR-520h, previously thought to have allowed ABCG2 overexpression, was found to be caused by the sequestering of the miRNA by the highly expressed ABCG2. In drug-sensitive cells, inhibitors against hsa-miR-519c and hsa-miR-520h could augment the cytotoxic effect of mitoxantrone, suggesting a substantial role for both miRNAs in controlling ABCG2 level and thereby anticancer drug response. However, in drug-resistant cells, altering the levels of the two miRNAs did not have any effect on sensitivity to mitoxantrone. Taken together, these studies suggest that in ABCG2-overexpressing drug-resistant cells, hsa-miR-519c is unable to affect ABCG2 expression because the mRNA lacks its binding site, whereas hsa-miR-520h is sequestered and unable to limit ABCG2 expression. Given the recent observation that a truncated 3′UTR is also observed in ABCG2-overexpressing human embryonic stem cells, our results in drug-resistant cell lines suggest that 3′UTR truncation is a relatively common mechanism of ABCG2 regulation. [Mol Cancer Ther 2009;8(10):2959–68]


British Journal of Cancer | 2008

Single-step doxorubicin-selected cancer cells overexpress the ABCG2 drug transporter through epigenetic changes

Anna Maria Calcagno; Jennifer M. Fostel; Kenneth K.W. To; Crystal D. Salcido; Scott E. Martin; Katherine J. Chewning; Chung-Pu Wu; Lyuba Varticovski; Susan E. Bates; Natasha J. Caplen; Suresh V. Ambudkar

Understanding the mechanisms of multidrug resistance (MDR) could improve clinical drug efficacy. Multidrug resistance is associated with ATP binding cassette (ABC) transporters, but the factors that regulate their expression at clinically relevant drug concentrations are poorly understood. We report that a single-step selection with low doses of anti-cancer agents, similar to concentrations reported in vivo, induces MDR that is mediated exclusively by ABCG2. We selected breast, ovarian and colon cancer cells (MCF-7, IGROV-1 and S-1) after exposure to 14 or 21 nM doxorubicin for only 10 days. We found that these cells overexpress ABCG2 at the mRNA and protein levels. RNA interference analysis confirmed that ABCG2 confers drug resistance. Furthermore, ABCG2 upregulation was facilitated by histone hyperacetylation due to weaker histone deacetylase 1-promoter association, indicating that these epigenetic changes elicit changes in ABCG2 gene expression. These studies indicate that the MDR phenotype arises following low-dose, single-step exposure to doxorubicin, and further suggest that ABCG2 may mediate early stages of MDR development. This is the first report to our knowledge of single-step, low-dose selection leading to overexpression of ABCG2 by epigenetic changes in multiple cancer cell lines.


Journal of the American Chemical Society | 2015

A Gold@Polydopamine Core–Shell Nanoprobe for Long-Term Intracellular Detection of MicroRNAs in Differentiating Stem Cells

Chun Kit K. Choi; Jinming Li; Kongchang Wei; Yang J. Xu; Lok Wai Cola Ho; Meiling Zhu; Kenneth K.W. To; Chung Hang J. Choi; Liming Bian

The capability of monitoring the differentiation process in living stem cells is crucial to the understanding of stem cell biology and the practical application of stem-cell-based therapies, yet conventional methods for the analysis of biomarkers related to differentiation require a large number of cells as well as cell lysis. Such requirements lead to the unavoidable loss of cell sources and preclude real-time monitoring of cellular events. In this work, we report the detection of microRNAs (miRNAs) in living human mesenchymal stem cells (hMSCs) by using polydopamine-coated gold nanoparticles (Au@PDA NPs). The PDA shell facilitates the immobilization of fluorescently labeled hairpin DNA strands (hpDNAs) that can recognize specific miRNA targets. The gold core and PDA shell quench the fluorescence of the immobilized hpDNAs, and subsequent binding of the hpDNAs to the target miRNAs leads to their dissociation from Au@PDA NPs and the recovery of fluorescence signals. Remarkably, these Au@PDA-hpDNA nanoprobes can naturally enter stem cells, which are known for their poor transfection efficiency, without the aid of transfection agents. Upon cellular uptake of these nanoprobes, we observe intense and time-dependent fluorescence responses from two important osteogenic marker miRNAs, namely, miR-29b and miR-31, only in hMSCs undergoing osteogenic differentiation and living primary osteoblasts but not in undifferentiated hMSCs and 3T3 fibroblasts. Strikingly, our nanoprobes can afford long-term tracking of miRNAs (5 days) in the differentiating hMSCs without the need of continuously replenishing cell culture medium with fresh nanoprobes. Our results demonstrate the capability of our Au@PDA-hpDNA nanoprobes for monitoring the differentiation status of hMSCs (i.e., differentiating versus undifferentiated) via the detection of specific miRNAs in living stem cells. Our nanoprobes show great promise in the investigation of the long-term dynamics of stem cell differentiation, identification and isolation of specific cell types, and high-throughput drug screening.


PLOS ONE | 2009

Vandetanib (Zactima, ZD6474) Antagonizes ABCC1- and ABCG2-Mediated Multidrug Resistance by Inhibition of Their Transport Function

Li Sheng Zheng; Fang Wang; Yu Hong Li; Xu Zhang; Li Ming Chen; Yong Ju Liang; Chun Ling Dai; Yan Yan Yan; Li Yang Tao; Yan Jun Mi; An Kui Yang; Kenneth K.W. To; Li Wu Fu

Background ABCC1 and ABCG2 are ubiquitous ATP-binding cassette transmembrane proteins that play an important role in multidrug resistance (MDR). In this study, we evaluated the possible interaction of vandetanib, an orally administered drug inhibiting multiple receptor tyrosine kinases, with ABCC1 and ABCG2 in vitro. Methodology and Principal Findings MDR cancer cells overexpressing ABCC1 or ABCG2 and their sensitive parental cell lines were used. MTT assay showed that vandetanib had moderate and almost equal-potent anti-proliferative activity in both sensitive parental and MDR cancer cells. Concomitant treatment of MDR cells with vandetanib and specific inhibitors of ABCC1 or ABCG2 did not alter their sensitivity to the former drug. On the other hand, clinically attainable but non-toxic doses of vandetanib were found to significantly enhance the sensitivity of MDR cancer cells to ABCC1 or ABCG2 substrate antitumor drugs. Flow cytometric analysis showed that vandetanib treatment significantly increase the intracellular accumulation of doxorubicin and rhodamine 123, substrates of ABCC1 and ABCG2 respectively, in a dose-dependent manner (P<0.05). However, no significant effect was shown in sensitive parental cell lines. Reverse transcription-PCR and Western blot analysis showed that vandetanib did not change the expression of ABCC1 and ABCG2 at both mRNA and protein levels. Furthermore, total and phosphorylated forms of AKT and ERK1/2 remained unchanged after vandetanib treatment in both sensitive and MDR cancer cells. Conclusions Vandetanib is unlikely to be a substrate of ABCC1 or ABCG2. It overcomes ABCC1- and ABCG2-mediated drug resistance by inhibiting the transporter activity, independent of the blockade of AKT and ERK1/2 signal transduction pathways.


British Journal of Pharmacology | 2012

Crizotinib (PF-02341066) reverses multidrug resistance in cancer cells by inhibiting the function of P-glycoprotein

Wen Jing Zhou; Xu Zhang; Chao Cheng; Fang Wang; Xiao Kun Wang; Yong Ju Liang; Kenneth K.W. To; Wang Zhou; Hong Bing Huang; Li Wu Fu

Besides targeting the well‐known oncogenic c‐Met, crizotinib is the first oral tyrosine kinase inhibitor inhibiting anaplastic lymphoma kinase (ALK) in clinical trials for the treatment of non‐small cell lung cancer. Here, we assessed the possible reversal of multidrug resistance (MDR) by crizotinib in vitro and in vivo.


Marine Drugs | 2010

Anthracenedione Derivatives as Anticancer Agents Isolated from Secondary Metabolites of the Mangrove Endophytic Fungi

Jian Ye Zhang; Li Yang Tao; Yong Ju Liang; Li Ming Chen; Yan Jun Mi; Li Sheng Zheng; Fang Wang; Zhi Gang She; Yong Cheng Lin; Kenneth K.W. To; Li Wu Fu

In this article, we report anticancer activity of 14 anthracenedione derivatives separated from the secondary metabolites of the mangrove endophytic fungi Halorosellinia sp. (No. 1403) and Guignardia sp. (No. 4382). Some of them inhibited potently the growth of KB and KBv200 cells, among which compound 6 displayed strong cytotoxicity with IC50 values of 3.17 and 3.21 μM to KB and KBv200 cells, respectively. Furthermore, we demonstrate that the mechanism involved in the apoptosis induced by compound 6 is probably related to mitochondrial dysfunction. Additionally, the structure-activity relationships of these compounds are discussed.


Phytomedicine | 2014

Reversal of P-glycoprotein (P-gp) mediated multidrug resistance in colon cancer cells by cryptotanshinone and dihydrotanshinone of Salvia miltiorrhiza.

Tao Hu; Kenneth K.W. To; Lin Wang; Lin Zhang; Lan Lu; Jing Shen; Ruby L.Y. Chan; Mingxing Li; John H.K. Yeung; Chi Hin Cho

OBJECTIVE Multidrug resistance (MDR) of cancer cells to a broad spectrum of anticancer drugs is an obstacle to successful chemotherapy. Overexpression of P-glycoprotein (P-gp), an ATP-binding cassette (ABC) membrane transporter, can mediate the efflux of cytotoxic drugs out of cancer cells, leading to MDR and chemotherapy failure. Thus, development of safe and effective P-gp inhibitors plays an important role in circumvention of MDR. This study investigated the reversal of P-gp mediated multidrug resistance in colon cancer cells by five tanshinones including tanshinone I, tanshinone IIA, cryptotanshinone, dihydrotanshinone and miltirone isolated from Salvia miltiorrhiza (Danshen), known to be safe in traditional Chinese medicine. METHODS The inhibitory effects of tanshinones on P-gp function were compared using digoxin bi-directional transport assay in Caco-2 cells. The potentiation of cytotoxicity of anticancer drugs by effective tanshinones were evaluated by MTT assay. Doxorubicin efflux assay by flow cytometry, P-gp protein expression by western blot analysis, immunofluorescence for P-gp by confocal microscopy, quantitative real-time PCR and P-gp ATPase activity assay were used to study the possible underlying mechanisms of action of effective tanshinones. RESULTS Bi-directional transport assay showed that only cryptotanshinone and dihydrotanshinone decreased digoxin efflux ratio in a concentration-dependent manner, indicating their inhibitory effects on P-gp function; whereas, tanshinone I, tanshinone IIA and miltirone had no inhibitory effects. Moreover, both cryptotanshinone and dihydrotanshinone could potentiate the cytotoxicity of doxorubicin and irinotecan in P-gp overexpressing SW620 Ad300 colon cancer cells. Results from mechanistic studies revealed that these two tanshinones increased intracellular accumulation of the P-gp substrate anticancer drugs, presumably by down-regulating P-gp mRNA and protein levels, and inhibiting P-gp ATPase activity. CONCLUSIONS Taken together, these findings suggest that cryptotanshinone and dihydrotanshinone could be further developed for sensitizing resistant cancer cells and used as an adjuvant therapy together with anticancer drugs to improve their therapeutic efficacies for colon cancer.

Collaboration


Dive into the Kenneth K.W. To's collaboration.

Top Co-Authors

Avatar

Fang Wang

Sun Yat-sen University

View shared research outputs
Top Co-Authors

Avatar

Li Wu Fu

Sun Yat-sen University

View shared research outputs
Top Co-Authors

Avatar

Liwu Fu

Sun Yat-sen University

View shared research outputs
Top Co-Authors

Avatar

Ge Lin

The Chinese University of Hong Kong

View shared research outputs
Top Co-Authors

Avatar

Steve C.F. Au-Yeung

The Chinese University of Hong Kong

View shared research outputs
Top Co-Authors

Avatar

Yee-Ping Ho

The Chinese University of Hong Kong

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Daniel C. Poon

The Chinese University of Hong Kong

View shared research outputs
Top Co-Authors

Avatar

Yan Jun Mi

Sun Yat-sen University

View shared research outputs
Top Co-Authors

Avatar

Susan E. Bates

National Institutes of Health

View shared research outputs
Researchain Logo
Decentralizing Knowledge