Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Kenneth L. McNally is active.

Publication


Featured researches published by Kenneth L. McNally.


Proceedings of the National Academy of Sciences of the United States of America | 2009

Genomewide SNP variation reveals relationships among landraces and modern varieties of rice.

Kenneth L. McNally; Kevin L. Childs; Regina Bohnert; Rebecca M. Davidson; Keyan Zhao; Victor Jun Ulat; Georg Zeller; Richard M. Clark; Douglas R. Hoen; Thomas E. Bureau; Renee Stokowski; Dennis G. Ballinger; Kelly A. Frazer; D. R. Cox; Badri Padhukasahasram; Carlos Bustamante; Detlef Weigel; David J. Mackill; Richard Bruskiewich; Gunnar Rätsch; C. Robin Buell; Hei Leung; Jan E. Leach

Rice, the primary source of dietary calories for half of humanity, is the first crop plant for which a high-quality reference genome sequence from a single variety was produced. We used resequencing microarrays to interrogate 100 Mb of the unique fraction of the reference genome for 20 diverse varieties and landraces that capture the impressive genotypic and phenotypic diversity of domesticated rice. Here, we report the distribution of 160,000 nonredundant SNPs. Introgression patterns of shared SNPs revealed the breeding history and relationships among the 20 varieties; some introgressed regions are associated with agronomic traits that mark major milestones in rice improvement. These comprehensive SNP data provide a foundation for deep exploration of rice diversity and gene–trait relationships and their use for future rice improvement.


Theoretical and Applied Genetics | 2001

Evaluation of near-isogenic lines of rice introgressed with QTLs for root depth through marker-aided selection

Lishuang Shen; Brigitte Courtois; Kenneth L. McNally; S. Robin; Zhikang Li

Abstract Drought is one of the main abiotic constraints in rice. A deep root system contributes efficiently to maintaining the water status of the crop through a stress period. After identifying QTLs affecting root parameters in a doubled-haploid (DH) population of rice derived from the cross IR64/Azucena, we started a marker-assisted backcross program to transfer the Azucena allele at four QTLs for deeper roots (on chromosomes 1, 2, 7 and 9) from selected DH lines into IR64. We selected the backcross progenies strictly on the basis of their genotypes at the marker loci in the target regions up to the BC3F2. We assessed the proportion of alleles remaining from Azucena in the non-target areas of the BC3F2 plants, which was in the range expected for the backcross stage reached. Twenty nine selected BC3F3 near-isogenic lines (NILs) were developed and compared to IR64 for the target root traits and three non-target traits in replicated experiments. Of the three tested NILs carrying target 1, one had significantly improved root traits over IR64. Three of the seven NILs carrying target 7 alone, as well as three of the eigth NILs carrying both targets 1 and 7, showed significantly improved root mass at depth. Four of the six NILs carrying target 9 had significantly improved maximum root length. Five NILs carrying target 2 were phenotyped, but none had a root phenotype significantly different from that of IR64. A re-analysis of the initial data with the composite interval mapping technique revealed two linked QTLs with opposite effects in this area. Some NILs were taller than IR64 and all had a decreased tiller number because of a likely co-introgression of linked QTLs. The usefulness of NILs, the efficiency of marker-aided selection for QTLs and the relationship between root traits are discussed. The NILs with an improved root system will permit testing the importance of root depth for water-limited environments.


Proceedings of the National Academy of Sciences of the United States of America | 2003

Convergent evolution of perenniality in rice and sorghum

F. Hu; D. Tao; Erik J. Sacks; Binying Fu; P. Xu; Jingping Li; Y. Yang; Kenneth L. McNally; Gurdev S. Khush; Andrew H. Paterson; Zhikang Li

Annual and perennial habit are two major strategies by which grasses adapt to seasonal environmental change, and these distinguish cultivated cereals from their wild relatives. Rhizomatousness, a key trait contributing to perenniality, was investigated by using an F2 population from a cross between cultivated rice (Oryza sativa) and its wild relative, Oryza longistaminata. Molecular mapping based on a complete simple sequence-repeat map revealed two dominant-complementary genes controlling rhizomatousness. Rhz3 was mapped to the interval between markers OSR16 [1.3 centimorgans (cM)] and OSR13 (8.1 cM) on rice chromosome 4 and Rhz2 located between RM119 (2.2 cM) and RM273 (7.4 cM) on chromosome 3. Comparative mapping indicated that each gene closely corresponds to major quantitative trait loci (QTLs) controlling rhizomatousness in Sorghum propinquum, a wild relative of cultivated sorghum. Correspondence of these genes in rice and sorghum, which diverged from a common ancestor ≈50 million years ago, suggests that the two genes may be key regulators of rhizome development in many Poaceae. Many additional QTLs affecting abundance of rhizomes in O. longistaminata were identified, most of which also corresponded to the locations of S. propinquum QTLs. Convergent evolution of independent mutations at, in some cases, corresponding genes may have been responsible for the evolution of annual cereals from perennial wild grasses. DNA markers closely linked to Rhz2 and Rhz3 will facilitate cloning of the genes, which may contribute significantly to our understanding of grass evolution, advance opportunities to develop perennial cereals, and offer insights into environmentally benign weed-control strategies.


Advances in Agronomy | 2009

Improvement of drought resistance in rice.

Rachid Serraj; Arvind Kumar; Kenneth L. McNally; I. Slamet-Loedin; R. M. Bruskiewich; Ramil Mauleon; J. Cairns; Robert J. Hijmans

Abstract The unpredictability of drought patterns and the inherent complexity of the physiological responses involved have made it difficult to characterize component traits required for improved performance, thus limiting crop improvement efforts to enhance drought resistance in rice. The various stress–response mechanisms and options to enhance plant survival under severe stress do not usually translate into yield stability under water deficit. Increased crop yield and water productivity require the optimization of the physiological processes involved in the critical stages of plant response to soil drying, water-use efficiency, and dehydration-avoidance mechanisms. New high-throughput phenotyping methodologies have been developed to allow fast and detailed evaluation of potential drought-resistant donors and the large number of lines identified by drought-breeding programs. Similarly, large collections of rice germplasm, including minicore sets, wild relatives, and mutant lines have been screened for drought-resistance traits. Genetic sources of drought resistance have now been identified for all major rice agroecosystems and some of the associated traits have been characterized. The identification and genetic mapping of major QTLs for performance under drought stress across environments are currently a major focus. This approach provides a powerful tool to dissect the genetic basis of drought resistance. If validated with accurate phenotyping and properly integrated in marker-assisted breeding programs, these approaches will accelerate the development of drought-resistant genotypes. This chapter reviews the recent progress and achievements in dissecting drought resistance in rice and presents future perspectives for the genetic enhancement of drought adaptation.


Nucleic Acids Research | 2015

SNP-Seek database of SNPs derived from 3000 rice genomes.

Nickolai Alexandrov; Shuaishuai Tai; Wensheng Wang; Locedie Mansueto; Kevin Palis; Roven Rommel Fuentes; Victor Jun Ulat; Dmytro Chebotarov; Gengyun Zhang; Zhikang Li; Ramil Mauleon; Ruaraidh Sackville Hamilton; Kenneth L. McNally

We have identified about 20 million rice SNPs by aligning reads from the 3000 rice genomes project with the Nipponbare genome. The SNPs and allele information are organized into a SNP-Seek system (http://www.oryzasnp.org/iric-portal/), which consists of Oracle database having a total number of rows with SNP genotypes close to 60 billion (20 M SNPs × 3 K rice lines) and web interface for convenient querying. The database allows quick retrieving of SNP alleles for all varieties in a given genome region, finding different alleles from predefined varieties and querying basic passport and morphological phenotypic information about sequenced rice lines. SNPs can be visualized together with the gene structures in JBrowse genome browser. Evolutionary relationships between rice varieties can be explored using phylogenetic trees or multidimensional scaling plots.


Plant Production Science | 2011

Drought Resistance Improvement in Rice: An Integrated Genetic and Resource Management Strategy

Rachid Serraj; Kenneth L. McNally; Inez H. Slamet-Loedin; Ajay Kohli; S.M. Haefele; G.N. Atlin; Arvind Kumar

Abstract Drought is the major constraint to rice production in rainfed areas across Asia and sub-Saharan Africa. In the context of current and predicted water scarcity, increasing irrigation is generally not a viable option for alleviating drought problems in rainfed rice-growing systems. It is therefore critical that genetic management strategies for drought focus on maximum extraction of available soil moisture and its efficient use in crop establishment and growth to maximize biomass and yield. Extensive genetic variation for drought resistance exists in rice germplasm. However, the current challenge is to decipher the complexities of drought resistance in rice and exploit all available genetic resources to produce rice varieties combining drought adaptation with high yield potential, quality, and resistance to biotic stresses. The strategy described here aims at developing a pipeline for elite breeding lines and hybrids that can be integrated with efficient management practices and delivered to rice farmers. This involves the development of high-throughput, high-precision phenotyping systems to allow genes for yield components under stress to be efficiently mapped and their effects assessed on a range of drought-related traits, and then moving the most promising genes into widely grown rice mega-varieties, while scaling up gene detection and delivery for use in marker-aided breeding.


Plant Physiology | 2006

Sequencing Multiple and Diverse Rice Varieties. Connecting Whole-Genome Variation with Phenotypes

Kenneth L. McNally; Richard Bruskiewich; David J. Mackill; C. Robin Buell; Jan E. Leach; Hei Leung

The International Rice Functional Genomics Consortium (IRFGC) has initiated a project to provide the rice research community with access to extensive information on genetic variation present within and between diverse rice cultivars and landraces, as well as the genetic resources to exploit that


International Journal of Plant Genomics | 2008

Rice Molecular Breeding Laboratories in the Genomics Era: Current Status and Future Considerations

Bert C. Y. Collard; Casiana Vera Cruz; Kenneth L. McNally; Parminder Virk; David J. Mackill

Using DNA markers in plant breeding with marker-assisted selection (MAS) could greatly improve the precision and efficiency of selection, leading to the accelerated development of new crop varieties. The numerous examples of MAS in rice have prompted many breeding institutes to establish molecular breeding labs. The last decade has produced an enormous amount of genomics research in rice, including the identification of thousands of QTLs for agronomically important traits, the generation of large amounts of gene expression data, and cloning and characterization of new genes, including the detection of single nucleotide polymorphisms. The pinnacle of genomics research has been the completion and annotation of genome sequences for indica and japonica rice. This information—coupled with the development of new genotyping methodologies and platforms, and the development of bioinformatics databases and software tools—provides even more exciting opportunities for rice molecular breeding in the 21st century. However, the great challenge for molecular breeders is to apply genomics data in actual breeding programs. Here, we review the current status of MAS in rice, current genomics projects and promising new genotyping methodologies, and evaluate the probable impact of genomics research. We also identify critical research areas to “bridge the application gap” between QTL identification and applied breeding that need to be addressed to realize the full potential of MAS, and propose ideas and guidelines for establishing rice molecular breeding labs in the postgenome sequence era to integrate molecular breeding within the context of overall rice breeding and research programs.


Plant Biotechnology Journal | 2013

New allelic variants found in key rice salt-tolerance genes: an association study.

Sónia Negrão; M. Cecília Almadanim; Inês S. Pires; Isabel A. Abreu; João Maroco; Brigitte Courtois; Glenn B. Gregorio; Kenneth L. McNally; M. Margarida Oliveira

Salt stress is a complex physiological trait affecting plants by limiting growth and productivity. Rice, one of the most important food crops, is rated as salt-sensitive. High-throughput screening methods are required to exploit novel sources of genetic variation in rice and further improve salinity tolerance in breeding programmes. To search for genotypic differences related to salt stress, we genotyped 392 rice accessions by EcoTILLING. We targeted five key salt-related genes involved in mechanisms such as Na(+) /K(+) ratio equilibrium, signalling cascade and stress protection, and we found 40 new allelic variants in coding sequences. By performing association analyses using both general and mixed linear models, we identified 11 significant SNPs related to salinity. We further evaluated the putative consequences of these SNPs at the protein level using bioinformatic tools. Amongst the five nonsynonymous SNPs significantly associated with salt-stress traits, we found a T67K mutation that may cause the destabilization of one transmembrane domain in OsHKT1;5, and a P140A alteration that significantly increases the probability of OsHKT1;5 phosphorylation. The K24E mutation can putatively affect SalT interaction with other proteins thus impacting its function. Our results have uncovered allelic variants affecting salinity tolerance that may be important in breeding.


Rice | 2010

Development of a research platform for dissecting phenotype-genotype associations in rice (Oryza spp.).

Chih-Wei Tung; Keyan Zhao; Mark H. Wright; M. Liakat Ali; Janelle Jung; Jennifer A. Kimball; Wricha Tyagi; Michael J. Thomson; Kenneth L. McNally; Hei Leung; Hyun Jung Kim; Sang-Nag Ahn; Andrew R. Reynolds; Brian E. Scheffler; Georgia C. Eizenga; Anna M. McClung; Carlos Bustamante; Susan R. McCouch

We present an overview of a research platform that provides essential germplasm, genotypic and phenotypic data and analytical tools for dissecting phenotype–genotype associations in rice. These resources include a diversity panel of 400 Oryza sativa and 100 Oryza rufipogon accessions that have been purified by single seed descent, a custom-designed Affymetrix array consisting of 44,100 SNPs, an Illumina GoldenGate assay consisting of 1,536 SNPs, and a suite of low-resolution 384-SNP assays for the Illumina BeadXpress Reader that are designed for applications in breeding, genetics and germplasm management. Our long-term goal is to empower basic research discoveries in rice by linking sequence diversity with physiological, morphological, and agronomic variation. This research platform will also help increase breeding efficiency by providing a database of diversity information that will enable researchers to identify useful DNA polymorphisms in genes and germplasm of interest and convert that information into cost-effective tools for applied plant improvement.

Collaboration


Dive into the Kenneth L. McNally's collaboration.

Top Co-Authors

Avatar

Hei Leung

International Rice Research Institute

View shared research outputs
Top Co-Authors

Avatar

Ramil Mauleon

International Rice Research Institute

View shared research outputs
Top Co-Authors

Avatar

Brigitte Courtois

International Rice Research Institute

View shared research outputs
Top Co-Authors

Avatar

Ruaraidh Sackville Hamilton

International Rice Research Institute

View shared research outputs
Top Co-Authors

Avatar

Rachid Serraj

International Rice Research Institute

View shared research outputs
Top Co-Authors

Avatar

Jan E. Leach

Colorado State University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Amelia Henry

International Rice Research Institute

View shared research outputs
Top Co-Authors

Avatar

Locedie Mansueto

International Rice Research Institute

View shared research outputs
Researchain Logo
Decentralizing Knowledge