Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Kenneth M. Baker is active.

Publication


Featured researches published by Kenneth M. Baker.


Circulation Research | 1999

The Cardiac Renin-Angiotensin System: Conceptual, or a Regulator of Cardiac Function?

David E. Dostal; Kenneth M. Baker

Angiotensin II, the effector peptide of the renin-angiotensin system, regulates cellular growth in response to developmental, physiological, and pathological processes. The identification of renin-angiotensin system components and angiotensin II receptors in cardiac tissue suggests the existence of an autocrine/paracrine system that has effects independent of angiotensin II derived from the circulatory system. To be functional, a local renin-angiotensin system should produce sufficient amounts of the autocrine and/or paracrine factor to elicit biological responses, contain the final effector (angiotensin II receptor), and respond to humoral, neural, and/or mechanical stimuli. In this review, we discuss evidence for a functional cardiac renin-angiotensin system.


Circulation Research | 1993

Angiotensin II is mitogenic in neonatal rat cardiac fibroblasts.

W Schorb; G W Booz; David E. Dostal; K M Conrad; K C Chang; Kenneth M. Baker

Angiotensin II has been reported to be a hormonal stimulus of cardiac growth, a response that may involve myocyte hypertrophy as well as growth of nonmyocytes. This study was designed to determine whether neonatal rat cardiac fibroblasts have an angiotensin II receptor that is coupled with hypertrophic and/or proliferative growth. Competitive radioligand binding studies showed that cardiac fibroblasts have a single class of high-affinity (IC50, 1.0 nM) angiotensin II binding sites (Bmax, 778 fmol/mg protein) that are sensitive to the competitive nonpeptide AT1 receptor antagonist losartan (IC50, 13 nM). Other angiotensin peptides competed for [125I]angiotensin II binding in the following rank order: angiotensin II > angiotensin III > angiotensin I > > [des-Asp1-des-Arg2]angiotensin II. A nonhydrolyzable analogue of guanosine triphosphate increased the dissociation rate of bound [125I]angiotensin II and decreased hormone binding to the receptor at equilibrium. The angiotensin II receptor was coupled with increases in intracellular calcium. Incorporation of precursors into protein, DNA, and RNA in response to angiotensin II was determined. In serum-deprived cultures, a 24-hour exposure to 1 microM [Sar1]angiotensin II increased rates of phenylalanine, thymidine, and uridine incorporation by 58%, 103%, and 118%, respectively. These increases were blocked by the noncompetitive AT1 receptor antagonist EXP3174. After 48 hours, [Sar1]angiotensin II increased total protein and DNA of cardiac fibroblasts by 23% and 15%, respectively, with no change in the protein/DNA ratio. [Sar1]Angiotensin II increased cell number by 138% after a 24-hour exposure, without affecting cell area. In summary, cardiac fibroblasts have G protein-linked AT1 receptors that are coupled with proliferative growth. These results suggest that angiotensin II-induced cardiac hypertrophy is, in part, secondary to stimulated increases in nonmyocyte cellular growth.


Hypertension | 1996

Role of Type 1 and Type 2 Angiotensin Receptors in Angiotensin II–Induced Cardiomyocyte Hypertrophy

George W. Booz; Kenneth M. Baker

We compared the ability of angiotensin II (Ang II) to induce hypertrophy of neonatal rat ventricular myocytes with that of endothelin-1. Over 72 hours, Ang II (1 mumol/L) increased the ratio of protein to DNA by less than 10%, whereas endothelin-1 (100 nmol/L) produced a 28% increase. The growth effects of either agonist occurred independently of chronotropic actions. Radioligand binding studies showed that myocytes have nearly 300-fold more receptors for endothelin-1 than Ang II, and type 1 and type 2 Ang II receptor subtypes (AT1 and AT2) are present in near equal proportions. Cotreatment with a 10-fold molar excess of AT2 antagonists (PD 123177 or CGP 42112) for 72 hours augmented the Ang II-induced increase in the protein-to-DNA ratio to levels nearly as high (23%) as those with endothelin-1 (28%). AT2 antagonists enhanced Ang II stimulation of protein synthesis, as indexed by [3H]leucine incorporation, whereas an AT1 antagonist blocked Ang II-induced incorporation. An AT2 antagonist also prevented Ang II-induced protein degradation. In conclusion, Ang II-induced myocyte growth is tempered because of low AT1 levels and an antigrowth effect of AT2. These findings have potential clinical significance in that regression of hypertension-induced cardiac hypertrophy by AT1 antagonists may be in part due to an unopposed antigrowth effect of Ang II mediated via AT2.


Cardiovascular Research | 1995

Molecular signalling mechanisms controlling growth and function of cardiac fibroblasts

George W. Booz; Kenneth M. Baker

Cardiac fibroblasts appear to be important in producing and maintaining the extracellular matrix (ECM) of the heart. The abnormal proliferation of cardiac fibroblasts and deposition of the ECM protein, collagen, associated with hypertension and myocardial infarction, may adversely affect the performance of the heart. Several groups of factors affect collagen gene expression and/or growth of cardiac fibroblasts. Angiotensin II, aldosterone and endothelins play a central role in the remodeling of the ECM in hypertension, and decrease collagenase activity and/or increase collagen synthesis in cultured cells. Regulatory peptides that are generally elevated at sites of injury, such as TGF-beta 1 and PDGF, increase collagen synthesis and/or stimulate mitogenesis. Mechanical stretch enhances collagen expression and cell proliferation, responses which could in part be due to integrin activation. Cytokines may stimulate or inhibit cell growth, the latter through prostaglandin formation. Angiotensin II is a principal determinant in vivo of cardiac fibroplasia and synthesis of the ECM proteins, collagen and fibronectin. Cardiac fibroblasts possess G-protein-coupled AT1 receptors for angiotensin II that couple to activation of multiple signalling pathways, including: phospholipase C-beta, with the subsequent release of Ca2+ from intracellular stores and activation of protein kinase C, mitogen-activated protein kinases, tyrosine kinases, phospholipase D, phosphatidic acid formation, and the STAT family of transcription factors. Cardiac fibroblasts respond to angiotensin II with hyperplastic/hypertrophic growth, and increased expression of collagen, fibronectin, and integrins. The mechanisms by which the AT1 receptor activates multiple signalling pathways are not known, although the receptor might interact at some level with both integrins and cytokine receptors. Different signalling pathways of the AT1 receptor may subserve different cellular responses, such as mitogenesis, ECM synthesis, or an inflammatory/stress response. Crosstalk among the signalling pathways of the AT1 receptor, and those of G-protein, cytokine, and growth-factor receptors, may determine the ultimate response of the cell.


Diabetes | 2008

Intracellular Angiotensin II Production in Diabetic Rats Is Correlated With Cardiomyocyte Apoptosis, Oxidative Stress, and Cardiac Fibrosis

Vivek P. Singh; Bao Le; Renu Khode; Kenneth M. Baker; Rajesh Kumar

OBJECTIVE—Many of the effects of angiotensin (Ang) II are mediated through specific plasma membrane receptors. However, Ang II also elicits biological effects from the interior of the cell (intracrine), some of which are not inhibited by Ang receptor blockers (ARBs). Recent in vitro studies have identified high glucose as a potent stimulus for the intracellular synthesis of Ang II, the production of which is mainly chymase dependent. In the present study, we determined whether hyperglycemia activates the cardiac intracellular renin-Ang system (RAS) in vivo and whether ARBs, ACE, or renin inhibitors block synthesis and effects of intracellular Ang II (iAng II). RESEARCH DESIGN AND METHODS—Diabetes was induced in adult male rats by streptozotocin. Diabetic rats were treated with insulin, candesartan (ARB), benazepril (ACE inhibitor), or aliskiren (renin inhibitor). RESULTS—One week of diabetes significantly increased iAng II levels in cardiac myocytes, which were not normalized by candesartan, suggesting that Ang II was synthesized intracellularly, not internalized through AT1 receptor. Increased intracellular levels of Ang II, angiotensinogen, and renin were observed by confocal microscopy. iAng II synthesis was blocked by aliskiren but not by benazepril. Diabetes-induced superoxide production and cardiac fibrosis were partially inhibited by candesartan and benazepril, whereas aliskiren produced complete inhibition. Myocyte apoptosis was partially inhibited by all three agents. CONCLUSIONS—Diabetes activates the cardiac intracellular RAS, which increases oxidative stress and cardiac fibrosis. Renin inhibition has a more pronounced effect than ARBs and ACE inhibitors on these diabetes complications and may be clinically more efficacious.


Regulatory Peptides | 2004

Evidence of a novel intracrine mechanism in angiotensin II-induced cardiac hypertrophy

Kenneth M. Baker; Mitchell I. Chernin; Taylor Schreiber; Sandhya Sanghi; Seema Haiderzaidi; George W. Booz; David E. Dostal; Rajesh Kumar

Angiotensin II (Ang II) has a significant role in regulating cardiac homeostasis through humoral, autocrine and paracrine pathways, via binding to the plasma membrane AT1 receptor. Recent literature has provided evidence for intracrine growth effects of Ang II in some cell lines, which does not involve interaction with the plasma membrane receptor. We hypothesized that such intracrine mechanisms are operative in the heart and likely participate in the cardiac hypertrophy induced by Ang II. Adenoviral and plasmid vectors were constructed to express Ang II peptide intracellularly. Neonatal rat ventricular myocytes (NRVMs) infected with the adenoviral vector showed significant hypertrophic growth as determined by cell size, protein synthesis and enhanced cytoskeletal arrangement. Adult mice injected with the plasmid vector developed significant cardiac hypertrophy after 48 h, without an increase in blood pressure or plasma Ang II levels. This was accompanied by increased transcription of transforming growth factor-beta (TGF-beta) and insulin-like growth factor-1 (IGF-1) genes. Losartan did not block the growth effects, excluding the involvement of extracellular Ang II and the plasma membrane AT1 receptor. These data demonstrate a previously unknown growth mechanism of Ang II in the heart, which should be considered when designing therapeutic strategies to block Ang II actions.


Journal of Biological Chemistry | 1995

Stable expression of a truncated AT1A receptor in CHO-K1 cells. The carboxyl-terminal region directs agonist-induced internalization but not receptor signaling or desensitization.

Walter G. Thomas; Thomas J. Thekkumkara; Thomas J. Motel; Kenneth M. Baker

Phosphorylation of serine and threonine residues in the carboxyl-terminal region of many G-protein-coupled receptors directs the rapid uncoupling from signal transduction pathways. In Chinese hamster ovary cells, we have stably expressed a truncated mutant of the angiotensin II (AT) receptor devoid of the carboxyl-terminal 45 amino acids, encompassing 13 serine/threonine residues. One clone, designated TL to indicate truncation after leucine 314, expressed a single class of angiotensin II receptors with a dissociation constant of 1.08 nM and a receptor density of 560 fmol/mg of protein (75,000 receptors/cell). A nonhydrolyzable analog of GTP accelerated the angiotensin II-induced dissociation of [I]angiotensin II from TL plasma membranes 3.6-fold, indicating G-protein coupling. In TL cells, angiotensin II stimulated the release of intracellular calcium and the induction of mitogen-activated protein kinase activity, the levels of which were comparable with the full-length AT receptor. The AII-stimulated calcium response was rapidly desensitized in both full-length and truncated AT receptors. Interestingly, angiotensin II-induced endocytosis of the truncated receptor was almost completely inhibited, suggesting that a recognition motif within the carboxyl-terminal 45 amino acids of the AT receptor promotes sequestration. Thus, truncation of the AT receptor after leucine 314 inhibits agonist-induced internalization without affecting the capacity of the expressed protein to adopt the correct conformation necessary for high affinity binding of angiotensin II, coupling to G-proteins, and activation of signal transduction pathways. The rapid desensitization and refractoriness of the angiotensin II-induced calcium transient in the TL cell line, in which putative carboxyl-terminal phosphorylation sites are absent, suggests that the mechanism of AT receptor desensitization differs from that of other prototypical G-protein-coupled receptors.


Current Opinion in Nephrology and Hypertension | 2008

The intracellular renin-angiotensin system: implications in cardiovascular remodeling

Rajesh Kumar; Vivek P. Singh; Kenneth M. Baker

Purpose of reviewThe renin–angiotensin system, traditionally viewed as a circulatory system, has significantly expanded in the last two decades to include independently regulated local systems in several tissues, newly identified active products of angiotensin II, and new receptors and functions of renin–angiotensin system components. In spite of our increased understanding of the renin–angiotensin system, a role of angiotensin II in cardiac hypertrophy, through direct effects on cardiovascular tissue, is still being debated. Here, we address the cardiovascular effects of angiotensin II and the role an intracellular renin–angiotensin system might play. Recent findingsRecent studies have shown that cardiac myocytes, fibroblasts and vascular smooth muscle cells synthesize angiotensin II intracellularly. Some conditions, such as high glucose, selectively increase intracellular generation and translocation of angiotensin II to the nucleus. Intracellular angiotensin II regulates the expression of angiotensinogen and renin, generating a feedback loop. The first reaction of intracellular angiotensin II synthesis is catalyzed by renin or cathepsin D, depending on the cell type, and chymase, not angiotensin-converting enzyme, catalyzes the second step. SummaryThese studies suggest that the intracellular renin–angiotensin system is an important component of the local system. Alternative mechanisms of angiotensin II synthesis and action suggest a need for novel therapeutic agents to block the intracellular renin–angiotensin system.


American Journal of Physiology-heart and Circulatory Physiology | 2008

Activation of the intracellular renin-angiotensin system in cardiac fibroblasts by high glucose: role in extracellular matrix production

Vivek P. Singh; Kenneth M. Baker; Rajesh Kumar

The occurrence of a functional intracellular renin-angiotensin system (RAS) has emerged as a new paradigm. Recently, we and others demonstrated intracellular synthesis of ANG II in cardiac myocytes and vascular smooth muscle cells that was dramatically stimulated in high glucose conditions. Cardiac fibroblasts significantly contribute to diabetes-induced diastolic dysfunction. The objective of the present study was to determine the existence of the intracellular RAS in cardiac fibroblasts and its role in extracellular matrix deposition. Neonatal rat ventricular fibroblasts were serum starved and exposed to isoproterenol or high glucose in the absence or presence of candesartan, which was used to prevent receptor-mediated uptake of ANG II. Under these conditions, an increase in ANG II levels in the cell lysate represented intracellular synthesis. Both isoproterenol and high glucose significantly increased intracellular ANG II levels. Confocal microscopy revealed perinuclear and nuclear distribution of intracellular ANG II. Consistent with intracellular synthesis, Western analysis showed increased intracellular levels of renin following stimulation with isoproterenol and high glucose. ANG II synthesis was catalyzed by renin and angiotensin-converting enzyme (ACE), but not chymase, as determined using specific inhibitors. High glucose resulted in increased transforming growth factor-beta and collagen-1 synthesis by cardiac fibroblasts that was partially inhibited by candesartan but completely prevented by renin and ACE inhibitors. In conclusion, cardiac fibroblasts contain a functional intracellular RAS that participates in extracellular matrix formation in high glucose conditions, an observation that may be helpful in developing an appropriate therapeutic strategy in diabetic conditions.


Journal of Biological Chemistry | 1995

Angiotensin II Receptor Endocytosis Involves Two Distinct Regions of the Cytoplasmic Tail A ROLE FOR RESIDUES ON THE HYDROPHOBIC FACE OF A PUTATIVE AMPHIPATHIC HELIX

Walter G. Thomas; Kenneth M. Baker; Thomas J. Motel; Thomas J. Thekkumkara

Following agonist stimulation, many receptors are rapidly internalized from the plasma membrane via a mechanism which presumably involves recognition motifs within the cytoplasmic domains of the receptor. We have previously demonstrated (Thomas, W. G., Thekkumkara, T. J., Motel, T. J., and Baker, K. M. (1995) J. Biol. Chem. 270, 207-213) that truncation of the angiotensin II (AT1A) receptor, to remove 45 amino acids from the cytoplasmic tail, markedly reduced agonist stimulated receptor endocytosis. In the present study, we have stably and transiently expressed wild type and carboxyl terminus mutated AT1A receptors in Chinese hamster ovary cells to identify regions and specific amino acids important for this process. Wild type AT1A receptors rapidly internalized (t = 2.5 min; Ymax = 76.4%) after AII stimulation. Using AT1A receptor mutants, truncated and deleted at the carboxyl terminus, two distinct regions important for internalization were identified: one membrane proximal site between residues 315-329 and another distal to Lys333, within the terminal 26 amino acids. Point mutations (Y302A, Y312A, L316F, Y319A, and K325A) were performed to identify residues contributing to the membrane proximal site. Mutation of Y302A, Y312A, and K325A had little effect on the rate (t = 4.3, 2.8, and 2.8 min) and maximal amount (Ymax = 81.7, 67.8, and 73.5%) of AII induced internalization. In contrast, L316F and Y319A mutations displayed an approximately 2.5-fold reduction in rate (t = 6.1 and 6.2 min) and L316F a decreased maximal level (Ymax = 38.1 and 71.4%, respectively) compared to wild type. Interestingly, Leu316 and Tyr319 are closely aligned within the hydrophobic aspect of a putative amphipathic helix, possibly representing an internalization motif for the AT1A receptor. We conclude that the AT1A receptor does not use the NPXXY (NPLFY302) motif, first described for the β2-adrenergic receptor, to mediate agonist stimulated endocytosis. Rather, two distinct regions of the carboxyl terminus are utilized: one involving hydrophobic and aromatic residues on a putative α-helix and another serine/threonine-rich domain.

Collaboration


Dive into the Kenneth M. Baker's collaboration.

Top Co-Authors

Avatar

David E. Dostal

Pennsylvania State University

View shared research outputs
Top Co-Authors

Avatar

George W. Booz

University of Mississippi Medical Center

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Thomas J. Thekkumkara

Texas Tech University Health Sciences Center

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge