Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Kenneth Manning is active.

Publication


Featured researches published by Kenneth Manning.


Nature Genetics | 2006

A naturally occurring epigenetic mutation in a gene encoding an SBP-box transcription factor inhibits tomato fruit ripening

Kenneth Manning; Mahmut Tör; Mervin Poole; Yiguo Hong; Andrew J. Thompson; Graham J. King; James J. Giovannoni; Graham B. Seymour

A major component in the regulatory network controlling fruit ripening is likely to be the gene at the tomato Colorless non-ripening (Cnr) locus. The Cnr mutation results in colorless fruits with a substantial loss of cell-to-cell adhesion. The nature of the mutation and the identity of the Cnr gene were previously unknown. Using positional cloning and virus-induced gene silencing, here we demonstrate that an SBP-box (SQUAMOSA promoter binding protein–like) gene resides at the Cnr locus. Furthermore, the Cnr phenotype results from a spontaneous epigenetic change in the SBP-box promoter. The discovery that Cnr is an epimutation was unexpected, as very few spontaneous epimutations have been described in plants. This study demonstrates that an SBP-box gene is critical for normal ripening and highlights the likely importance of epialleles in plant development and the generation of natural variation.


Planta | 1998

Isolation of a set of ripening-related genes from strawberry: their identification and possible relationship to fruit quality traits

Kenneth Manning

Abstract. The ripening of strawberry (Fragaria ananassa Duch.), a non-climacteric fruit, is a complex developmental process that involves many changes in gene expression. To understand how these changes relate to the biochemistry and composition of the fruit the specific genes involved have been examined. A high-quality cDNA library prepared from ripe strawberry fruit was differentially screened for ripening-related clones using cDNA from ripe and white fruits. From 112 up-regulated clones obtained in the primary screen, 66 differentially expressed clones were isolated from the secondary screen. The partial sequences of these cDNAs were compared with database sequences and 26 families of non-redundant clones were identified. Northern analysis confirmed that all of these cDNAs were ripening-enhanced. The expression of many of their corresponding genes was negatively regulated in auxin-treated fruit. These sequences, several of which are novel to fruits, encode proteins involved in key metabolic events including anthocyanin biosynthesis, cell wall degradation, sucrose and lipid metabolism, protein synthesis and degradation, and respiration. These findings are discussed in relation to the role of these genes in determining fruit quality characteristics.


Plant Physiology | 2010

A SQUAMOSA MADS-box gene involved in the regulation of anthocyanin accumulation in bilberry fruits

Laura Jaakola; Mervin Poole; Matthew O. Jones; Terttu Kämäräinen-Karppinen; Janne J. Koskimäki; Anja Hohtola; Hely Häggman; Paul D. Fraser; Kenneth Manning; Graham J. King; Helen Thomson; Graham B. Seymour

Anthocyanins are important health-promoting phytochemicals that are abundant in many fleshy fruits. Bilberry (Vaccinium myrtillus) is one of the best sources of these compounds. Here, we report on the expression pattern and functional analysis of a SQUAMOSA-class MADS box transcription factor, VmTDR4, associated with anthocyanin biosynthesis in bilberry. Levels of VmTDR4 expression were spatially and temporally linked with color development and anthocyanin-related gene expression. Virus-induced gene silencing was used to suppress VmTDR4 expression in bilberry, resulting in substantial reduction in anthocyanin levels in fully ripe fruits. Chalcone synthase was used as a positive control in the virus-induced gene silencing experiments. Additionally, in sectors of fruit tissue in which the expression of the VmTDR4 gene was silenced, the expression of R2R3 MYB family transcription factors related to the biosynthesis of flavonoids was also altered. We conclude that VmTDR4 plays an important role in the accumulation of anthocyanins during normal ripening in bilberry, probably through direct or indirect control of transcription factors belonging to the R2R3 MYB family.


Planta | 2007

Identification of novel small RNAs in tomato ( Solanum lycopersicum )

Rachel L. Rusholme Pilcher; Simon Moxon; Nima Pakseresht; Vincent Moulton; Kenneth Manning; Graham B. Seymour; Tamas Dalmay

To date, the majority of plant small RNAs (sRNA) have been identified in rice, poplar and Arabidopsis. To identify novel tomato sRNAs potentially involved in tomato specific processes such as fruit development and/or ripening, we cloned 4,018 sRNAs from tomato fruit tissue at the mature green stage. From this pool of sRNAs, we detected tomato homologues of nine known miRNAs, including miR482; a poplar miRNA not conserved in Arabidopsis or rice. We identified three novel putative miRNAs with flanking sequence that could be folded into a stem-loop precursor structure and which accumulated as 19-24nt RNA. One of these putative miRNAs (Put-miRNA3) exhibited significantly higher expression in fruit compared with leaf tissues, indicating a specific role in fruit development processes. We also identified nine sRNAs that accumulated as 19–24nt RNA species in tomato but genome sequence was not available for these loci. None of the nine sRNAs or three putative miRNAs possessed a homologue in Arabidopsis that had a precursor with a predicted stem-loop structure or that accumulated as a sRNA species, suggesting that the 12 sRNAs we have identified in tomato may have a species specific role in this model fruit species.


Journal of Experimental Botany | 2011

A SEPALLATA gene is involved in the development and ripening of strawberry (Fragaria x ananassa Duch.) fruit, a non-climacteric tissue.

Graham B. Seymour; Carol D. Ryder; Volkan Cevik; John P. Hammond; Alexandra Popovich; Graham J. King; Julia Vrebalov; James J. Giovannoni; Kenneth Manning

Climacteric and non-climacteric fruits have traditionally been viewed as representing two distinct programmes of ripening associated with differential respiration and ethylene hormone effects. In climacteric fruits, such as tomato and banana, the ripening process is marked by increased respiration and is induced and co-ordinated by ethylene, while in non-climacteric fruits, such as strawberry and grape, it is controlled by an ethylene-independent process with little change in respiration rate. The two contrasting mechanisms, however, both lead to texture, colour, and flavour changes that probably reflect some common programmes of regulatory control. It has been shown that a SEPALLATA(SEP)4-like gene is necessary for normal ripening in tomato. It has been demonstrated here that silencing a fruit-related SEP1/2-like (FaMADS9) gene in strawberry leads to the inhibition of normal development and ripening in the petal, achene, and receptacle tissues. In addition, analysis of transcriptome profiles reveals pleiotropic effects of FaMADS9 on fruit development and ripening-related gene expression. It is concluded that SEP genes play a central role in the developmental regulation of ripening in both climacteric and non-climacteric fruits. These findings provide important information to extend the molecular control of ripening in a non-climacteric fruit beyond the limited genetic and cultural options currently available.


Plant Physiology | 1997

Gene Expression in the Pulp of Ripening Bananas (Two-Dimensional Sodium Dodecyl Sulfate-Polyacrylamide Gel Electrophoresis of in Vitro Translation Products and cDNA Cloning of 25 Different Ripening-Related mRNAs)

Rosybel de Jesús Medina-Suarez; Kenneth Manning; J. Fletcher; J. Aked; Colin Roger Bird; Graham B. Seymour

mRNA was extracted from the pulp and peel of preclimacteric (d 0) bananas (Musa AAA group, cv Grand Nain) and those exposed to ethylene gas for 24 h and stored in air alone for a further 1 (d 2) and 4 d (d 5). Two-dimensional sodium dodecyl sulfate-polyacrylamide gel electrophoresis of in vitro translation products from the pulp and peel of these fruits revealed significant up-regulation of numerous transcripts during ripening. The majority of the changes were initiated by d 2, with the level of these messages increasing during the remainder of the ripening period. Pulp tissue from d 2 was used for the construction of a cDNA library. This library was differentially screened for ripening-related clones using cDNA from d-0 and d-2 pulp by a novel microtiter plate method. In the primary screen 250 up- and down-regulated clones were isolated. Of these, 59 differentially expressed clones were obtained from the secondary screen. All of these cDNAs were partially sequenced and grouped into families after database searches. Twenty-five nonredundant groups of pulp clones were identified. These encoded enzymes were involved in ethylene biosynthesis, respiration, starch metabolism, cell wall degradation, and several other key metabolic events. We describe the analysis of these clones and their possible involvement in ripening.


Plant Molecular Biology | 2003

Pectate lyase gene expression and enzyme activity in ripening banana fruit

M.C. Marín-Rodríguez; David L. Smith; Kenneth Manning; John Orchard; Graham B. Seymour

Two distinct cDNA clones showing sequence homology to higher-plant pectate lyase (Pel) genes were isolated from ripening banana fruits. The transcripts were detected only in fruit tissue and both were strongly ripening-related. Yeast transformation with the most highly expressed Pel clone produced a recombinant protein with pectate lyase activity, demonstrating that this sequence was likely to encode a pectate lyase protein in planta. An assay developed for measuring the action of the endogenous enzyme from banana pulp tissue revealed a significant increase in calcium-dependent pectate lyase activity during ripening. The enhanced levels of enzyme activity corresponded with an increase in soluble polyuronides from banana pulp.


Tree Genetics & Genomes | 2010

A FRUITFULL-like gene is associated with genetic variation for fruit flesh firmness in apple ( Malus domestica Borkh.)

Volkan Cevik; Carol D. Ryder; Alexandra Popovich; Kenneth Manning; Graham J. King; Graham B. Seymour

The FRUITFULL (FUL) and SHATTERPROOF (SHP) genes are involved in regulating fruit development and dehiscence in Arabidopsis. We tested the hypothesis that this class of genes are also involved in regulating the development of fleshy fruits, by exploring genetic and phenotypic variation within the apple (Malus domestica) gene pool. We isolated and characterised the genomic sequences of two candidate orthologous FUL-like genes, MdMADS2.1 and MdMADS2.2. These were mapped using the reference population ‘Prima x Fiesta’ to loci on Malus linkage groups LG14 and LG06, respectively. An additional MADS-box gene, MdMADS14, shares high amino acid identity with the Arabidopsis SHATTERPROOF1/2 genes and was mapped to Malus linkage group LG09. Association analysis between quantitative fruit flesh firmness estimates of ‘Prima x Fiesta’ progeny and the MdMADS2.1, MdMADS2.2 and MdMADS14 loci was carried out using a mixed model analysis of variance. This revealed a significant association (P < 0.01) between MdMADS2.1 and fruit flesh firmness. Further evidence for the association between MdMADS2.1 and fruit flesh firmness was obtained using a case–control population-based genetic association approach. For this, a polymorphic repeat, (AT)n, in the 3′ UTR of MdMADS2.1 was used as a locus-specific marker to screen 168 apple accessions for which historical assessments of fruit texture attributes were available. This analysis revealed a significant association between the MdMADS2.1 and fruit flesh firmness at both allelic (χ2 = 34, df = 9, P < 0.001) and genotypic (χ2 = 57, df = 32, P < 0.01) levels.


Scientific Reports | 2015

Tuning LeSPL-CNR expression by SlymiR157 affects tomato fruit ripening.

Weiwei Chen; Junhua Kong; Tongfei Lai; Kenneth Manning; Chaoqun Wu; Ying Wang; Cheng-Feng Qin; Bin Li; Zhiming Yu; Xian Zhang; Meiling He; Pengcheng Zhang; Mei Gu; Xin Yang; Atef Mahammed; Chunyang Li; Toba Osman; Nongnong Shi; Huizhong Wang; Stephen D. Jackson; Yule Liu; Philippe Gallusci; Yiguo Hong

In plants, microRNAs (miRNAs) play essential roles in growth, development, yield, stress response and interactions with pathogens. However no miRNA has been experimentally documented to be functionally involved in fruit ripening although many miRNAs have been profiled in fruits. Here we show that SlymiR157 and SlymiR156 differentially modulate ripening and softening in tomato (Solanum lycopersicum). SlymiR157 is expressed and developmentally regulated in normal tomato fruits and in those of the Colourless non-ripening (Cnr) epimutant. It regulates expression of the key ripening gene LeSPL-CNR in a likely dose-dependent manner through miRNA-induced mRNA degradation and translation repression. Viral delivery of either pre-SlymiR157 or mature SlymiR157 results in delayed ripening. Furthermore, qRT-PCR profiling of key ripening regulatory genes indicates that the SlymiR157-target LeSPL-CNR may affect expression of LeMADS-RIN, LeHB1, SlAP2a and SlTAGL1. However SlymiR156 does not affect the onset of ripening, but it impacts fruit softening after the red ripe stage. Our findings reveal that working together with a ripening network of transcription factors, SlymiR157 and SlymiR156 form a critical additional layer of regulatory control over the fruit ripening process in tomato.


Scientific Reports | 2015

Requirement of CHROMOMETHYLASE3 for somatic inheritance of the spontaneous tomato epimutation Colourless non-ripening

Weiwei Chen; Junhua Kong; Cheng Qin; Sheng Yu; Jinjuan Tan; Yun-Ru Chen; Chaoqun Wu; Hui Wang; Yan Shi; Chunyang Li; Bin Li; Pengcheng Zhang; Ying Wang; Tongfei Lai; Zhiming Yu; Xian Zhang; Nongnong Shi; Huizhong Wang; Toba Osman; Yule Liu; Kenneth Manning; Stephen D. Jackson; Dominique Rolin; Silin Zhong; Graham B. Seymour; Philippe Gallusci; Yiguo Hong

Naturally-occurring epimutants are rare and have mainly been described in plants. However how these mutants maintain their epigenetic marks and how they are inherited remain unknown. Here we report that CHROMOMETHYLASE3 (SlCMT3) and other methyltransferases are required for maintenance of a spontaneous epimutation and its cognate Colourless non-ripening (Cnr) phenotype in tomato. We screened a series of DNA methylation-related genes that could rescue the hypermethylated Cnr mutant. Silencing of the developmentally-regulated SlCMT3 gene results in increased expression of LeSPL-CNR, the gene encodes the SBP-box transcription factor residing at the Cnr locus and triggers Cnr fruits to ripen normally. Expression of other key ripening-genes was also up-regulated. Targeted and whole-genome bisulfite sequencing showed that the induced ripening of Cnr fruits is associated with reduction of methylation at CHG sites in a 286-bp region of the LeSPL-CNR promoter, and a decrease of DNA methylation in differentially-methylated regions associated with the LeMADS-RIN binding sites. Our results indicate that there is likely a concerted effect of different methyltransferases at the Cnr locus and the plant-specific SlCMT3 is essential for sustaining Cnr epi-allele. Maintenance of DNA methylation dynamics is critical for the somatic stability of Cnr epimutation and for the inheritance of tomato non-ripening phenotype.

Collaboration


Dive into the Kenneth Manning's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Graham J. King

Southern Cross University

View shared research outputs
Top Co-Authors

Avatar

Mervin Poole

University of Nottingham

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Yiguo Hong

Hangzhou Normal University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Mahmut Tör

University of Worcester

View shared research outputs
Researchain Logo
Decentralizing Knowledge