Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Kenneth R. Beyerlein is active.

Publication


Featured researches published by Kenneth R. Beyerlein.


Nature Communications | 2014

Lipidic cubic phase injector facilitates membrane protein serial femtosecond crystallography

Uwe Weierstall; Daniel James; Chong Wang; Thomas A. White; Dingjie Wang; Wei Liu; John C. Spence; R. Bruce Doak; Garrett Nelson; Petra Fromme; Raimund Fromme; Ingo Grotjohann; Christopher Kupitz; Nadia A. Zatsepin; Haiguang Liu; Shibom Basu; Daniel Wacker; Gye Won Han; Vsevolod Katritch; Sébastien Boutet; Marc Messerschmidt; Garth J. Williams; Jason E. Koglin; M. Marvin Seibert; Markus Klinker; Cornelius Gati; Robert L. Shoeman; Anton Barty; Henry N. Chapman; Richard A. Kirian

Lipidic cubic phase (LCP) crystallization has proven successful for high-resolution structure determination of challenging membrane proteins. Here we present a technique for extruding gel-like LCP with embedded membrane protein microcrystals, providing a continuously renewed source of material for serial femtosecond crystallography. Data collected from sub-10-μm-sized crystals produced with less than 0.5 mg of purified protein yield structural insights regarding cyclopamine binding to the Smoothened receptor.


Science | 2013

Serial femtosecond crystallography of G protein-coupled receptors.

Wei Liu; Daniel Wacker; Cornelius Gati; Gye Won Han; Daniel James; Dingjie Wang; Garrett Nelson; Uwe Weierstall; Vsevolod Katritch; Anton Barty; Nadia A. Zatsepin; Dianfan Li; Marc Messerschmidt; Sébastien Boutet; Garth J. Williams; Jason E. Koglin; M. Marvin Seibert; Chong Wang; Syed T. A. Shah; Shibom Basu; Raimund Fromme; Christopher Kupitz; Kimberley Rendek; Ingo Grotjohann; Petra Fromme; Richard A. Kirian; Kenneth R. Beyerlein; Thomas A. White; Henry N. Chapman; Martin Caffrey

G Structures G protein–coupled receptors (GPCRs) are eukaryotic membrane proteins that have a central role in cellular communication and have become key drug targets. To overcome the difficulties of growing GPCRs crystals, Liu et al. (p. 1521) used an x-ray free-electron laser to determine a high-resolution structure of the serotonin receptor from microcrystals. The structure of a human serotonin receptor was solved using a free-electron laser to analyze microcrystals. X-ray crystallography of G protein–coupled receptors and other membrane proteins is hampered by difficulties associated with growing sufficiently large crystals that withstand radiation damage and yield high-resolution data at synchrotron sources. We used an x-ray free-electron laser (XFEL) with individual 50-femtosecond-duration x-ray pulses to minimize radiation damage and obtained a high-resolution room-temperature structure of a human serotonin receptor using sub-10-micrometer microcrystals grown in a membrane mimetic matrix known as lipidic cubic phase. Compared with the structure solved by using traditional microcrystallography from cryo-cooled crystals of about two orders of magnitude larger volume, the room-temperature XFEL structure displays a distinct distribution of thermal motions and conformations of residues that likely more accurately represent the receptor structure and dynamics in a cellular environment.


Journal of Applied Crystallography | 2016

Recent developments in CrystFEL

Thomas A. White; Valerio Mariani; Wolfgang Brehm; Oleksandr Yefanov; Anton Barty; Kenneth R. Beyerlein; Fedor Chervinskii; Lorenzo Galli; Cornelius Gati; Takanori Nakane; Alexandra Tolstikova; Keitaro Yamashita; Chun Hong Yoon; Kay Diederichs; Henry N. Chapman

Developments in the CrystFEL software suite, for processing diffraction data from ‘serial crystallography’ experiments, are described.


Journal of Synchrotron Radiation | 2015

Indications of radiation damage in ferredoxin microcrystals using high-intensity X-FEL beams

Karol Nass; Lutz Foucar; Thomas R. M. Barends; Elisabeth Hartmann; Sabine Botha; Robert L. Shoeman; R. Bruce Doak; Roberto Alonso-Mori; Andrew Aquila; Sasa Bajt; Anton Barty; Richard Bean; Kenneth R. Beyerlein; Maike Bublitz; Nikolaj D. Drachmann; Jonas Lindholt Gregersen; H. Olof Jönsson; Wolfgang Kabsch; Stephan Kassemeyer; Jason E. Koglin; Michael Krumrey; Daniel Mattle; Marc Messerschmidt; Poul Nissen; Linda Reinhard; Oleg Sitsel; Dimosthenis Sokaras; Garth J. Williams; Stefan P. Hau-Riege; Nicusor Timneanu

Proteins that contain metal cofactors are expected to be highly radiation sensitive since the degree of X-ray absorption correlates with the presence of high-atomic-number elements and X-ray energy. To explore the effects of local damage in serial femtosecond crystallography (SFX), Clostridium ferredoxin was used as a model system. The protein contains two [4Fe-4S] clusters that serve as sensitive probes for radiation-induced electronic and structural changes. High-dose room-temperature SFX datasets were collected at the Linac Coherent Light Source of ferredoxin microcrystals. Difference electron density maps calculated from high-dose SFX and synchrotron data show peaks at the iron positions of the clusters, indicative of decrease of atomic scattering factors due to ionization. The electron density of the two [4Fe-4S] clusters differs in the FEL data, but not in the synchrotron data. Since the clusters differ in their detailed architecture, this observation is suggestive of an influence of the molecular bonding and geometry on the atomic displacement dynamics following initial photoionization. The experiments are complemented by plasma code calculations.


Nature | 2016

Macromolecular diffractive imaging using imperfect crystals

Kartik Ayyer; Oleksandr Yefanov; Dominik Oberthür; Shatabdi Roy-Chowdhury; Lorenzo Galli; Valerio Mariani; Shibom Basu; Jesse Coe; Chelsie E. Conrad; Raimund Fromme; Alexander Schaffer; Katerina Dörner; Daniel James; Christopher Kupitz; Markus Metz; Garrett Nelson; Paulraj Lourdu Xavier; Kenneth R. Beyerlein; Marius Schmidt; Iosifina Sarrou; John C. Spence; Uwe Weierstall; Thomas A. White; Jay How Yang; Yun Zhao; Mengning Liang; Andrew Aquila; Mark S. Hunter; Jason E. Koglin; Sébastien Boutet

The three-dimensional structures of macromolecules and their complexes are mainly elucidated by X-ray protein crystallography. A major limitation of this method is access to high-quality crystals, which is necessary to ensure X-ray diffraction extends to sufficiently large scattering angles and hence yields information of sufficiently high resolution with which to solve the crystal structure. The observation that crystals with reduced unit-cell volumes and tighter macromolecular packing often produce higher-resolution Bragg peaks suggests that crystallographic resolution for some macromolecules may be limited not by their heterogeneity, but by a deviation of strict positional ordering of the crystalline lattice. Such displacements of molecules from the ideal lattice give rise to a continuous diffraction pattern that is equal to the incoherent sum of diffraction from rigid individual molecular complexes aligned along several discrete crystallographic orientations and that, consequently, contains more information than Bragg peaks alone. Although such continuous diffraction patterns have long been observed—and are of interest as a source of information about the dynamics of proteins—they have not been used for structure determination. Here we show for crystals of the integral membrane protein complex photosystem II that lattice disorder increases the information content and the resolution of the diffraction pattern well beyond the 4.5-ångström limit of measurable Bragg peaks, which allows us to phase the pattern directly. Using the molecular envelope conventionally determined at 4.5 ångströms as a constraint, we obtain a static image of the photosystem II dimer at a resolution of 3.5 ångströms. This result shows that continuous diffraction can be used to overcome what have long been supposed to be the resolution limits of macromolecular crystallography, using a method that exploits commonly encountered imperfect crystals and enables model-free phasing.


Scientific Reports | 2017

Double-flow focused liquid injector for efficient serial femtosecond crystallography.

Dominik Oberthuer; Juraj Knoška; Max O. Wiedorn; Kenneth R. Beyerlein; David A. Bushnell; Elena G. Kovaleva; Michael Heymann; Lars Gumprecht; Richard A. Kirian; Anton Barty; Valerio Mariani; Aleksandra Tolstikova; Luigi Adriano; Salah Awel; Miriam Barthelmess; Katerina Dörner; P. Lourdu Xavier; Oleksandr Yefanov; Daniel James; Garrett Nelson; Dingjie Wang; George Calvey; Yujie Chen; Andrea Schmidt; Michael Szczepek; Stefan Frielingsdorf; Oliver Lenz; Edward H. Snell; Philip J. J. Robinson; Božidar Šarler

Serial femtosecond crystallography requires reliable and efficient delivery of fresh crystals across the beam of an X-ray free-electron laser over the course of an experiment. We introduce a double-flow focusing nozzle to meet this challenge, with significantly reduced sample consumption, while improving jet stability over previous generations of nozzles. We demonstrate its use to determine the first room-temperature structure of RNA polymerase II at high resolution, revealing new structural details. Moreover, the double flow-focusing nozzles were successfully tested with three other protein samples and the first room temperature structure of an extradiol ring-cleaving dioxygenase was solved by utilizing the improved operation and characteristics of these devices.


Review of Scientific Instruments | 2015

Ceramic micro-injection molded nozzles for serial femtosecond crystallography sample delivery

Kenneth R. Beyerlein; Luigi Adriano; Michael Heymann; Richard A. Kirian; Juraj Knoška; Fabian Wilde; Henry N. Chapman; Sasa Bajt

Serial femtosecond crystallography (SFX) using X-ray Free-Electron Lasers (XFELs) allows for room temperature protein structure determination without evidence of conventional radiation damage. In this method, a liquid suspension of protein microcrystals can be delivered to the X-ray beam in vacuum as a micro-jet, which replenishes the crystals at a rate that exceeds the current XFEL pulse repetition rate. Gas dynamic virtual nozzles produce the required micrometer-sized streams by the focusing action of a coaxial sheath gas and have been shown to be effective for SFX experiments. Here, we describe the design and characterization of such nozzles assembled from ceramic micro-injection molded outer gas-focusing capillaries. Trends of the emitted jet diameter and jet length as a function of supplied liquid and gas flow rates are measured by a fast imaging system. The observed trends are explained by derived relationships considering choked gas flow and liquid flow conservation. Finally, the performance of these nozzles in a SFX experiment is presented, including an analysis of the observed background.


Philosophical Transactions of the Royal Society B | 2014

Phasing coherently illuminated nanocrystals bounded by partial unit cells

Richard A. Kirian; Richard Bean; Kenneth R. Beyerlein; Oleksandr Yefanov; Thomas A. White; Anton Barty; Henry N. Chapman

With the use of highly coherent femtosecond X-ray pulses from a free-electron laser, it is possible to record protein nanocrystal diffraction patterns with far more information than is present in conventional crystallographic diffraction data. It has been suggested that diffraction phases may be retrieved from such data via iterative algorithms, without the use of a priori information and without restrictions on resolution. Here, we investigate the extension of this approach to nanocrystals with edge terminations that produce partial unit cells, and hence cannot be described by a common repeating unit cell. In this situation, the phase problem described in previous work must be reformulated. We demonstrate an approximate solution to this phase problem for crystals with random edge terminations.


Proceedings of the National Academy of Sciences of the United States of America | 2017

Atomic structure of granulin determined from native nanocrystalline granulovirus using an X-ray free-electron laser.

Cornelius Gati; Dominik Oberthuer; Oleksandr Yefanov; Richard D. Bunker; Francesco Stellato; Elaine Chiu; Shin Mei Yeh; Andrew Aquila; Shibom Basu; Richard Bean; Kenneth R. Beyerlein; Sabine Botha; Sébastien Boutet; Daniel P. DePonte; R. Bruce Doak; Raimund Fromme; Lorenzo Galli; Ingo Grotjohann; Daniel James; Christopher Kupitz; Lukas Lomb; Marc Messerschmidt; Karol Nass; Kimberly N. Rendek; Robert L. Shoeman; Dingjie Wang; Uwe Weierstall; Thomas A. White; Garth J. Williams; Nadia A. Zatsepin

Significance The room temperature structure of natively formed protein nanocrystals consisting of 9,000 unit cells has been solved to 2 Å resolution using an unattenuated X-ray free-electron laser (XFEL) beam, representing, by far, the smallest protein crystals used for protein structure determination by X-ray crystallography to date. Radiation damage limits structure determination from protein crystals using synchrotron techniques, whereas femtosecond X-ray pulses from free-electron lasers enable much higher tolerable doses, extracting more signal per molecule, allowing the study of submicrometer crystals. Radiation-sensitive features, such as disulfide bonds, are well resolved in the XFEL structure despite the extremely high dose (1.3 GGy) used. Analysis of signal levels obtained in this experiment indicates that structure determination from even smaller protein crystals could be possible. To understand how molecules function in biological systems, new methods are required to obtain atomic resolution structures from biological material under physiological conditions. Intense femtosecond-duration pulses from X-ray free-electron lasers (XFELs) can outrun most damage processes, vastly increasing the tolerable dose before the specimen is destroyed. This in turn allows structure determination from crystals much smaller and more radiation sensitive than previously considered possible, allowing data collection from room temperature structures and avoiding structural changes due to cooling. Regardless, high-resolution structures obtained from XFEL data mostly use crystals far larger than 1 μm3 in volume, whereas the X-ray beam is often attenuated to protect the detector from damage caused by intense Bragg spots. Here, we describe the 2 Å resolution structure of native nanocrystalline granulovirus occlusion bodies (OBs) that are less than 0.016 μm3 in volume using the full power of the Linac Coherent Light Source (LCLS) and a dose up to 1.3 GGy per crystal. The crystalline shell of granulovirus OBs consists, on average, of about 9,000 unit cells, representing the smallest protein crystals to yield a high-resolution structure by X-ray crystallography to date. The XFEL structure shows little to no evidence of radiation damage and is more complete than a model determined using synchrotron data from recombinantly produced, much larger, cryocooled granulovirus granulin microcrystals. Our measurements suggest that it should be possible, under ideal experimental conditions, to obtain data from protein crystals with only 100 unit cells in volume using currently available XFELs and suggest that single-molecule imaging of individual biomolecules could almost be within reach.


Structural Dynamics | 2015

Simple convergent-nozzle aerosol injector for single-particle diffractive imaging with X-ray free-electron lasers

Richard A. Kirian; Salah Awel; Niko Eckerskorn; Holger Fleckenstein; Max O. Wiedorn; Luigi Adriano; Sasa Bajt; Miriam Barthelmess; Richard Bean; Kenneth R. Beyerlein; Leonard M. G. Chavas; M. Domaracky; Michael Heymann; Daniel A. Horke; Juraj Knoška; Markus Metz; Andrew J. Morgan; Dominik Oberthuer; Nils Roth; T. Sato; Paulraj Lourdu Xavier; Oleksandr Yefanov; Andrei Rode; Jochen Küpper; Henry N. Chapman

A major challenge in high-resolution x-ray free-electron laser-based coherent diffractive imaging is the development of aerosol injectors that can efficiently deliver particles to the peak intensity of the focused X-ray beam. Here, we consider the use of a simple convergent-orifice nozzle for producing tightly focused beams of particles. Through optical imaging we show that 0.5 μm particles can be focused to a full-width at half maximum diameter of 4.2 μm, and we demonstrate the use of such a nozzle for injecting viruses into a micro-focused soft-X-ray FEL beam.

Collaboration


Dive into the Kenneth R. Beyerlein's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Anton Barty

Lawrence Livermore National Laboratory

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Daniel James

Arizona State University

View shared research outputs
Top Co-Authors

Avatar

Sasa Bajt

Lawrence Livermore National Laboratory

View shared research outputs
Top Co-Authors

Avatar

Sébastien Boutet

SLAC National Accelerator Laboratory

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Dingjie Wang

Arizona State University

View shared research outputs
Researchain Logo
Decentralizing Knowledge