Kenneth R. Rodriguez
Ohio State University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Kenneth R. Rodriguez.
Journal of Chemical Physics | 2004
Kenneth R. Rodriguez; Summit Shah; Shaun M. Williams; Shannon Teeters-Kennedy; James V. Coe
The surface-plasmon-mediated, extraordinary transmission of metallic arrays of subwavelength apertures has been used as the light source for absorption studies of self-assembled monolayers on metal. Enhanced infrared absorption spectra of a sequence of alkanethiol self-assembled monolayers on copper were recorded for carbon chain lengths varying from 8 to 18 atoms. Transition positions and intensities are presented over a large range of the infrared region. The connection between the vibrational modes of the CH(2) wagging progression and the infinite methylene chain is explored using a traditional coupled oscillator approach and a new cluster perspective.
Nanotechnology | 2004
Shaun M. Williams; Kenneth R. Rodriguez; Shannon Teeters-Kennedy; Summit Shah; Trisha M. Rogers; Amanda D. Stafford; James V. Coe
Self-assembled monolayers, phospholipid bilayers, and membrane bound proteins are assembled on a subwavelength metallic array. These assemblies are assayed with direct infrared absorption spectroscopy which is greatly enhanced due to the extraordinary infrared transmission of the arrays. Stacking the arrays, one upon another, accentuates the surface plasmon properties and provides the basis of a nanospaced capacitive sensor.
Journal of Chemical Physics | 2009
Katherine E. Cilwa; Kenneth R. Rodriguez; Joseph M. Heer; Marvin A. Malone; Lloyd Corwin; James V. Coe
Metal films with arrays of subwavelength holes (mesh) exhibit extraordinary transmission resonances to which many attribute a role for surface plasmon polaritons (SPPs); others debated this point. Experimental measurements of propagation lengths are presented under conditions that pertain to the use of SPPs for surface spectroscopy. The lateral extent of electromagnetic propagation along the mesh surface is measured by recording absorption spectra of a line of latex microspheres as a function of distance away from the line along the mesh. Measurements reveal an exponential functional form for decay of absorption signal laterally from the absorption source. Results at 697 cm(-1), which are closest to the strongest transmission resonance of the mesh, reveal a 1/e propagation distance along the surface of 17.8+/-2.9 microm. This is 40% larger than the lattice spacing implicating the holes as the SPP damping mechanism, however, this is significantly shorter than smooth metal expectations.
Journal of Chemical Physics | 2007
Kenneth R. Rodriguez; Hong Tian; Joseph M. Heer; Shannon Teeters-Kennedy; James V. Coe
The interaction of an infrared surface plasmon and an excited molecular vibration was investigated by using a square array of subwavelength holes in a Ni film which supports propagating, surface-plasmon-mediated, transmission resonances. The largest transmission resonance [the (1,0)(-)] was tuned through the rocking vibration of the hexadecane molecule (at 721 cm(-1)) in a hexadecane film on the mesh by varying the thickness of the film. The interaction of the rocking vibration and surface plasmon is characterized spectroscopically by an increase in the intensity of the vibrational band by more than a factor of 2, variation of the vibrational line shape relative to the spectrum on a nonmetallic surface, and shifts in vibrational peak position by as much as 3.0 cm(-1). Relationships are developed between the transmission resonance position and the thickness and dielectric properties of the coating.
Journal of Chemical Physics | 2006
Kenneth R. Rodriguez; Shaun M. Williams; Matt A. Young; Shannon Teeters-Kennedy; Joseph M. Heer; James V. Coe
Reliable thermochemistry is computed for infinite stretches of pure-carbon materials including acetylenic and cumulenic carbon chains, graphene sheet, and single-walled carbon nanotubes (SWCNTs) by connection to the properties of finite size molecules that grow into the infinitely long systems. Using ab initio G3 theory, the infinite cumulenic chain (:C[double bond]C[double bond]C[double bond]C:) is found to be 1.9+/-0.4 kcal/mol per carbon less stable in free energy at room temperature than the acetylenic chain (.C[triple bond]C-C[triple bond]C.) which is 24.0 kcal/mol less stable than graphite. The difference between carbon-carbon triple, double, and single bond lengths (1.257, 1.279, and 1.333 A, respectively) in infinite chains is evident but much less than with small hydrocarbon molecules. These results are used to evaluate the efficacy of similar calculations with the less rigorous PM3 semiempirical method on the (5,5) SWCNT, which is too large to be studied with high-level ab initio methods. The equilibrium electronic energy change for C(g)-->C[infinite (5,5) SWCNT] is -166.7 kcal/mol, while the corresponding free energy change at room temperature is -153.3 kcal/mol (6.7 kcal/mol less stable than graphite). A threefold alternation (6.866, 6.866, and 6.823 A) in the ring diameter of the equilibrium structure of infinitely long (5,5) SWCNT is apparent, although the stability of this structure over the constant diameter structure is small compared to the zero point energy of the nanotube. In general, different (n,m) SWCNTs have different infinite tube energetics, as well as very different energetic trends that vary significantly with length, diameter, and capping.
AIP Advances | 2014
Kenneth R. Rodriguez; Marvin A. Malone; Warren A. Nanney; Cassandra J. A. Maddux; James V. Coe; Hernan L. Martinez
The enthalpy and Gibbs free energy thermodynamical potentials of single walled carbon nanotubes were studied of all types (armchairs, zig-zags, chirals (n>m), and chiral (n<m)). Bulk values of these thermodynamic potentials were obtained using a previously demonstrated robust method based on semi-empirical PM3 calculations and an extrapolated cluster approach. Those values were used to study the relationship between the thermodynamic potentials and the diameter of the nanotube. Results of this study led to the proposal of a single equation for the thermodynamical potential of [Formula: see text] or [Formula: see text] (assembly of nanotubes from atoms) versus the chiral vector indexes n and m for any given nanotube. The equations show a good level of accuracy in predicting thermodynamic potentials for practical applications.
Annual Review of Physical Chemistry | 2008
James V. Coe; Joseph M. Heer; Shannon Teeters-Kennedy; Hong Tian; Kenneth R. Rodriguez
Journal of Physical Chemistry B | 2004
Shaun M. Williams; Kenneth R. Rodriguez; Shannon Teeters-Kennedy; Amanda D. Stafford; Sarah R. Bishop; Ushani Lincoln; James V. Coe
Journal of Physical Chemistry B | 2003
Shaun M. Williams; Amanda D. Stafford; Kenneth R. Rodriguez; Trisha M. Rogers; James V. Coe
Journal of Physical Chemistry C | 2007
James V. Coe; Kenneth R. Rodriguez; Shannon Teeters-Kennedy; Katherine E. Cilwa; Joseph M. Heer; Hong Tian; Shaun M. Williams