Kenneth R. Stalder
Smith & Nephew
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Kenneth R. Stalder.
IEEE Transactions on Plasma Science | 2002
Jean Woloszko; Kenneth R. Stalder; I. G. Brown
Characteristics of plasmas formed by repetitively-pulsed electrical discharges in sodium chloride and barium chloride saline solutions are reported. Spectroscopic observations in conjunction with an analysis of the voltage and current behavior of the discharge lead to a model in which the liquid is vaporized and ionized to form a plasma containing excited water fragments H* and OH* as well as ions and neutrals from the salt. For typical conditions under which plasma is formed, the plasma density is estimated to be of order 10/sup 12/ cm/sup -3/ and the electron temperature about 4 eV.
Biomedical optics | 2003
Jean Woloszko; Martin Kwende; Kenneth R. Stalder
Coblation is a unique method of delivering radiofrequency energy to soft tissue for applications in Otolaryngology (ENT). Using radiofrequency in a bipolar mode with a conductive solution, such as saline. Coblation energizes the ions in the saline to form a localized plasma near the target tissue. The plasma has enough energy to dissociate water molecules from the saline, as well as ionizing the saline salt species, thus forming chemical conditions leading to the breaking of the tissues molecular bonds. Energetic electrons in the plasma also possess enough energy to directly dissociate tissue chemical bonds. The overall effect results in tissue ablation and localized removal or reduction of tissue volume. The heat dissipated in the process, aided by continual cooling from the surrounding saline solution, produces tissue temperature raises of approximately 45 - 85°C, significantly lower than traditional radio-frequency techniques. Coblation has been used for Otolaryngological applications such as Uvulopalatopharyngoplasty (UPPP), tonsillectomy, turbinate reduction, palate reduction, base of tongue reduction and various Head and Neck cancer procedures. The decreased thermal effect of Coblation has led to less pain and faster recovery for cases where tissue is excised. Several clinical studies have shown the benefits of using Coblation for both extra and intra-capsular tonsillectomy.
43rd AIAA Aerospace Sciences Meeting and Exhibit | 2005
Robert Vidmar; Kenneth R. Stalder
Species concentration measurements will provide experimental data to compare with ongoing gas-kinetic modeling and provide a gas-kinetic link to macroscopic quantities such as conductivity, the overall electron attachment rate, and the net power required to sustain plasma. The apparatus, operating parameters, and diagnostics are discussed.
Proceedings of SPIE | 2013
Thomas P. Ryan; Kenneth R. Stalder; Jean Woloszko
Plasma Medicine is a growing field that is having an impact in several important areas in therapeutic patient care, combining plasma physics, biology, and clinical medicine. Historically, plasmas in medicine were used in electrosurgery for cautery and non-contact hemostasis. Presently, non-thermal plasmas have attained widespread use in medicine due to their effectiveness and compatibility with biological systems. The paper will give a general overview of how low temperature, non-equilibrium, gas plasmas operate, both from physics and biology perspectives. Plasma is commonly described as the fourth state of matter and is typically comprised of charged species, active molecules and atoms, as well as a source of UV and photons. The most active areas of plasma technology applications are in wound treatment; tissue regeneration; inactivation of pathogens, including biofilms; treating skin diseases; and sterilization. There are several means of generating plasmas for use in medical applications, including plasma jets, dielectric barrier discharges, capacitively or inductively coupled discharges, or microplasmas. These systems overcome the former constraints of high vacuum, high power requirements and bulky systems, into systems that use room air and other gases and liquids at low temperature, low power, and hand-held operation at atmospheric pressure. Systems will be discussed using a variety of energy sources: pulsed DC, AC, microwave and radiofrequency, as well as the range of frequency, pulse duration, and gas combinations in an air environment. The ionic clouds and reactive species will be covered in terms of effects on biological systems. Lastly, several commercial products will be overviewed in light of the technology utilized, health care problems being solved, and clinical trial results.
44th AIAA Aerospace Sciences Meeting and Exhibit | 2006
Robert Vidmar; Kenneth R. Stalder; Megan Seeley
‡An apparatus to investigate the generation of atmospheric pressure plasma by means of an energetic electron-beam source has been constructed. Initial data on the time history of the electron and ozone concentrations for a pulsed electron-beam source over a limited pressure range are presented. An RF diagnostic system is described that infers the electron density from an absorption and phase shift measurement at X-band. Ozone concentration is measured using an ozone absorption line at 254 nm and a multi-pass White cell. An optical emission spectrum from electron-beam excited air is presented. The instrumentation used in these measurements is described in detail. Results are compared to theoretical predictions based on an air-chemistry simulation code.
Proceedings of SPIE | 2017
Thomas P. Ryan; Kenneth R. Stalder
Plasma medicine is a rapidly growing field of treatment, with the number and type of medical applications growing annually, such as dentistry, cancer treatment, wound treatment, Antimicrobial (bacteria, biofilm, virus, fungus, prions), and surface sterilization. Work promoting muscle and blood vessel regeneration and osteointegration is being investigated. This review paper will cover the latest treatments using gas-based plasmas in medicine. Disinfection of water and new commercial systems will also be reviewed, as well as vaccine deactivation. With the rapid increase in new investigators, development of new devices and systems for treatment, and wider clinical applications, Plasma medicine is becoming a powerful tool in in the field of medicine. There are a wide range of Plasma sources that allows customization of the effect. These variations include frequency (DC to MHz), voltage capacity (kV), gas source (He, Ar; O2, N2, air, water vapor; combinations), direct/indirect target exposure, and water targets.
Proceedings of SPIE | 2017
Jonathan L. Gaspredes; Thomas P. Ryan; Kenneth R. Stalder; Jean Woloszko
Data were previously reported on studies of the effects of electrical discharges on the corrosion and wear of simple, single-wire test devices immersed in isotonic saline 1 . This work showed that there are a wide variety of mechanisms that can explain various aspects of electrode mass loss, even with very simple electrode geometries and operating conditions. It was found that the electrode material composition played an important role. Subsequently, our studies were expanded to include more realistic device geometries and operating conditions. This paper shows the results of studies on wear characteristics of electrodes made from a variety of highly corrosion resistant metals and alloys, including Waspaloy, Hastelloy, Inconel, Havar, Monel, and other pure metals such as Hafnium. All of these metals underwent wear testing under clinically relevant conditions. Depending on the operating conditions, multiple discrete physical and chemical effects were observed at different locations on the surface of an individual millimeter-scale device electrode. Scanning electron microscope (SEM) micrographs, Energy-dispersive X-ray spectroscopy (EDS) and area loss data will be presented for a variety of test conditions and electrode materials.
Proceedings of SPIE | 2015
Thomas P. Ryan; Kenneth R. Stalder; Jean Woloszko
Plasma is referred to as the fourth state of matter and is frequently generated in the environment of a strong electric field. The result consists of highly reactive species--ions, electrons, reactive atoms and molecules, and UV radiation. Plasma Medicine unites a number of fields, including Physics, Plasma Chemistry, Cell Biology, Biochemistry, and Medicine. The treatment modality utilizes Cold Atmospheric Plasma (CAP), which is able to sterilize and treat microbes in a nonthermal manner. These gas-based plasma systems operate at close to room temperature and atmospheric pressure, making them very practical for a range of potential treatments and are highly portable for clinical use throughout the health care system. The hypothesis is that gas based plasma kills bacteria, fungus, and viruses but spares mammalian cells. This paper will review systematic work which shows examples of systems and performance in regards to antimicrobial effects and the sparing of mammalian cells. The mechanism of action will be discussed, as well as dosing for the treatment of microbial targets, including sterilization processes, another important healthcare need. In addition, commercial systems will be overviewed and compared, along with evidence-based, patient results. The range of treatments cover wound treatment and biofilms, as well as antimicrobial treatment, with little chance for resistance and tolerance, as in drug regimens. Current clinical studies include applications in dentistry, food treatment, cancer treatment, wound treatment for bacteria and biofilms, and systems to combat health care related infections.
Proceedings of SPIE | 2015
Kenneth R. Stalder; Thomas P. Ryan; Jonathan L. Gaspredes; Jean Woloszko
Coblation® is an electrosurgical technology which employs electrically-excited electrodes in the presence of saline solution to produce a localized and ionized plasma that can cut, ablate, and otherwise treat tissues for many different surgical needs. To improve our understanding of how Coblation plasmas develop from devices made from different electrode materials we describe several experiments designed to elucidate material effects. Initial experiments studied simple, noncommercial cylindrical electrode test devices operating in buffered isotonic saline without applied suction. The applied RF voltage, approximately 300 V RMS, was sufficient to form glow discharges around the active electrodes. The devices exhibited significantly different operating characteristics, which we ascribe to the differing oxidation tendencies and other physical properties of the electrode materials. Parameters measured include RMS voltage and current, instantaneous voltage and current, temporally-resolved light emission and optical emission spectra, and electrode mass-loss measurements. We correlate these measured properties with some of the bulk characteristics of the electrode materials such as work functions, standard reduction potentials and sputter yields.
Proceedings of SPIE | 2013
Jean Woloszko; Ashley Endler; Thomas P. Ryan; Kenneth R. Stalder
Over the past 18 years, several electrosurgical systems generating a low temperature plasma in an aqueous conductive solution have been commercialized for various clinical applications and have been used in over 10 million patients to date. The most popular utilizations are in arthroscopic surgery, otorhinolaryngology surgery, spine and neurosurgery, urology and wound care. These devices can be configured to bring saline to the tip and to have concomitant aspiration to remove by-products and excess fluid. By tuning the electrode geometry, waveform and fluid dynamic at the tip of the devices, tissue resection and thermal effects can be adjusted individually. This allows one to design products that can operate as precise tissue dissectors for treatment of articular cartilage or debridement of chronic wounds, as well as global tissue debulking devices providing sufficient concomitant hemostasis for applications like tonsillectomies. Effects of these plasma based electrosurgical devices on cellular biology, healing response and nociceptive receptors has also been studied in various models. This talk will include a review of the clinical applications, with product descriptions, results and introductory review of some of the research on the biological effects of these devices.