Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Kenneth R. Tovar is active.

Publication


Featured researches published by Kenneth R. Tovar.


The Journal of Neuroscience | 2004

Gephyrin Is Critical for Glycine Receptor Clustering But Not for the Formation of Functional GABAergic Synapses in Hippocampal Neurons

Sabine Levi; Kenneth R. Tovar; Ann Marie Craig

The role of the scaffolding protein gephyrin at hippocampal inhibitory synapses is not well understood. A previous study (Kneussel et al., 1999) reported a complete loss of synaptic clusters of the major GABAAR subunits α2 and γ2 in hippocampal neurons lacking gephyrin. In contrast, we show here that GABAAR α2 and γ2 subunits do cluster at pyramidal synapses in hippocampal cultures from gephyrin-/- mice, albeit at reduced levels compared with control neurons. Synaptic aggregation of GABAAR α1 on interneurons was identical between the culture types. Furthermore, we recorded miniature IPSCs (mIPSCs) from gephyrin-/- neurons. Although the mean mIPSC amplitude was reduced (by 23%) compared with control, the frequency of these events was unchanged. Cell surface labeling experiments indicated that gephyrin contributes, in part, to aggregation but not to insertion or stabilization of GABAAR α2 and γ2 in the plasma membrane. Thus, a major gephyrin-independent component of hippocampal inhibitory synapse development must exist. We also report that glycine receptors cluster at GABAergic synapses in a subset of hippocampal interneurons and pyramidal neurons. Unlike GABAARs, synaptic clustering of glycine receptors was completely abolished in gephyrin-/- neurons. Finally, artificial extrasynaptic aggregation of GABAAR was able to redistribute and cocluster gephyrin by a mechanism requiring a neuron-specific modification or intermediary protein. We propose a model of hippocampal inhibitory synapse development in which some GABAARs cluster at synapses by a gephyrin-independent mechanism and recruit gephyrin. This clustered gephyrin may then recruit glycine receptors, additional GABAARs, and other signal-transducing components.


The Journal of Neuroscience | 2013

Triheteromeric NMDA Receptors at Hippocampal Synapses

Kenneth R. Tovar; Matthew J. McGinley; Gary L. Westbrook

NMDA receptors are composed of two GluN1 (N1) and two GluN2 (N2) subunits. Constituent N2 subunits control the pharmacological and kinetic characteristics of the receptor. NMDA receptors in hippocampal or cortical neurons are often thought of as diheteromeric, meaning that they contain only one type of N2 subunit. However, triheteromeric receptors with more than one type of N2 subunit also have been reported, and the relative contribution of diheteromeric and triheteromeric NMDA receptors at synapses has been difficult to assess. Because wild-type hippocampal principal neurons express N1, N2A, and N2B, we used cultured hippocampal principal neurons from N2A and N2B knock-out mice as templates for diheteromeric synaptic receptors. However, summation of N1/N2B and N1/N2A EPSCs could not account for the deactivation kinetics of wild-type EPSCs. To make a quantitative estimate of NMDA receptor subtypes at wild-type synapses, we used the deactivation kinetics and the effects of the competitive antagonist NVP-AAM077. Our results indicate that three types of NMDA receptors contribute to wild-type EPSCs, with at least two-thirds being triheteromeric receptors. Functional isolation of synaptic triheteromeric receptors revealed deactivation kinetics and pharmacology that were distinct from either diheteromeric receptor subtype. Because of differences in open probability, synaptic triheteromeric receptors outnumbered N1/N2A receptors by 5.8 to 1 and N1/N2B receptors by 3.2 to 1. Our results suggest that triheteromeric NMDA receptors must either be preferentially assembled or preferentially localized at synapses.


Journal of Neurophysiology | 2009

Direct Actions of Carbenoxolone on Synaptic Transmission and Neuronal Membrane Properties

Kenneth R. Tovar; Brady J. Maher; Gary L. Westbrook

The increased appreciation of electrical coupling between neurons has led to many studies examining the role of gap junctions in synaptic and network activity. Although the gap junctional blocker carbenoxolone (CBX) is effective in reducing electrical coupling, it may have other actions as well. To study the non-gap junctional effects of CBX on synaptic transmission, we recorded from mouse hippocampal neurons cultured on glial micro-islands. This recording configuration allowed us to stimulate and record excitatory postsynaptic currents (EPSCs) or inhibitory postsynaptic currents (IPSCs) in the same neuron or pairs of neurons. CBX irreversibly reduced evoked alpha-amino-3-hydroxy-5-methyl-4-isoxazole-proprionic acid (AMPA) receptor-mediated EPSCs. Consistent with a presynaptic site of action, CBX had no effect on glutamate-evoked whole cell currents and increased the paired-pulse ratio of AMPA and N-methyl-d-aspartate (NMDA) receptor-mediated EPSCs. CBX also reversibly reduced GABA(A) receptor-mediated IPSCs, increased the action potential width, and reduced the action potential firing rate. Our results indicate CBX broadly affects several neuronal membrane conductances independent of its effects on gap junctions. Thus effects of carbenoxolone on network activity cannot be interpreted as resulting from specific block of gap junctions.


The Journal of Neuroscience | 2011

Pten Knockdown In Vivo Increases Excitatory Drive onto Dentate Granule Cells

Bryan W. Luikart; Eric Schnell; Eric K. Washburn; AeSoon L. Bensen; Kenneth R. Tovar; Gary L. Westbrook

Some cases of autism spectrum disorder have mutations in the lipid phosphatase, phosphatase and tensin homolog on chromosome 10 (Pten). Tissue specific deletion of Pten in the hippocampus and cortex of mice causes anatomical and behavioral abnormalities similar to human autism. However, the impact of reductions in Pten on synaptic and circuit function remains unexplored. We used in vivo stereotaxic injections of lentivirus expressing a short hairpin RNA to knock down Pten in mouse neonatal and young adult dentate granule cells. We then assessed the morphology and synaptic physiology between 2 weeks and 4 months later. Confocal imaging of the hippocampus revealed a marked increase in granule cell size and an increase in dendritic spine density. The onset of morphological changes occurred earlier in neonatal mice than in young adults. We used whole-cell recordings from granule cells in acute slices to assess synaptic function after Pten knockdown. Consistent with the increase in dendritic spines, the frequency of excitatory miniature and spontaneous postsynaptic currents increased. However, there was little or no effect on IPSCs. Thus, Pten knockdown results in an imbalance between excitatory and inhibitory synaptic activity. Because reductions in Pten affected mature granule cells as well as developing granule cells, we suggest that the disruption of circuit function by Pten hypofunction may be ongoing well beyond early development.


The Journal of Neuroscience | 2005

Synapse-Specific Regulation of AMPA Receptor Subunit Composition by Activity

Kimberly J. Harms; Kenneth R. Tovar; Ann Marie Craig

We examined the changes that arise when neurotransmitter release is inhibited in a subpopulation of hippocampal neurons in coculture with normally active neighbors. Subsets of neurons were presynaptically silenced by chronic expression of tetanus toxin light chain tagged with cyan fluorescent protein (TNTCFP). Surprisingly, silenced neurons formed as many presynaptic terminals as their active neighbors when grown together on glial microislands. However, silenced neurons could not recruit the AMPA-type glutamate receptor subunit GluR1 as efficiently when competing with active neighbors. The immunofluorescence intensity ratio of GluR1 at synaptic puncta versus shaft was reduced by 22% opposite TNTCFP-expressing terminals compared with active neighbors. In contrast, this effect is abolished when vesicular release is blocked in all neurons. Local presynaptic inhibition by TNTCFP did not change the synaptic level of the AMPA receptor subunits GluR2 or GluR2/3 or of the PSD95 (postsynaptic density 95) family scaffolding proteins. Thus, neurotransmitter release selectively regulates the AMPA receptor population on a synapse-by-synapse basis but is not essential for an axon to efficiently compete for synaptic territory in a simple model system. These results demonstrate precise input specificity of postsynaptic receptor composition via differential activity among neighbor synapses.


The Journal of Neuroscience | 2012

Amino-Terminal Ligands Prolong NMDA Receptor-Mediated EPSCs

Kenneth R. Tovar; Gary L. Westbrook

The amino-terminal domains of NMDA receptor subunits are important for receptor assembly and desensitization, and incorporate the high-affinity binding sites for zinc and ifenprodil. These amino-terminal ligands are thought of as subunit-specific receptor inhibitors. However, multiple NMDA receptor subtypes contribute to EPSCs at wild-type hippocampal synapses. To understand the action of amino-terminal ligands, we first used cultured hippocampal neurons from N2A and N2B knock-out mice. EPSCs from these neurons have properties that are consistent with N1/N2B and N1/N2A diheteromeric receptors, respectively. As expected, zinc reduced the EPSC peak amplitude from N2B KO neurons, but surprisingly also prolonged the deactivation, resulting in a marked redistribution of charge. Consistent with prolongation of the EPSC, zinc produced a longer latency to first opening of glutamate-bound receptors, which resulted in a decrease in the number of receptors that opened by the peak. Ifenprodil had similar effects on EPSCs from N2A KO neurons. In neurons from wild-type mice, zinc or ifenprodil reduced the EPSC peak, but only zinc caused significant charge redistribution, consistent with a small contribution of N1/N2B diheteromers in these neurons. Our results indicate that ligand binding to amino-terminal domains can alter the behavior of synaptic NMDA receptors under the nonequilibrium conditions of glutamate release during synaptic transmission. By prolonging EPSCs, amino-terminal ligands could markedly affect the computational properties of NMDA receptors and could potentially be exploited for therapeutic purposes.


Journal of Neurophysiology | 2014

The IGF-derived tripeptide Gly-Pro-Glu is a weak NMDA receptor agonist

Christopher E. Vaaga; Kenneth R. Tovar; Gary L. Westbrook

Glutamate acts as the universal agonist at ionotropic glutamate receptors in part because of its high degree of conformational flexibility. Other amino acids and small peptides, however, can activate N-methyl-d-aspartate (NMDA) receptors, albeit usually with lower affinity and efficacy. Here, we examined the action of glycine-proline-glutamate (GPE), a naturally occurring tripeptide formed in the brain following cleavage of IGF-I. GPE is thought to have biological activity in the brain, but its mechanism of action remains unclear. With its flanking glutamate and glycine residues, GPE could bind to either the agonist or coagonist sites on NMDA receptors, however, this has not been directly tested. Using whole cell patch-clamp recordings in combination with rapid solution exchange, we examined both steady-state currents induced by GPE as well as the effects of GPE on synaptically evoked currents. High concentrations of GPE evoked inward currents, which were blocked either by NMDA receptor competitive antagonists or the voltage-dependent channel blocker Mg(2+). GPE also produced a slight attenuation in the NMDA- and α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA)-mediated excitatory postsynaptic currents without altering the paired-pulse ratio. Our results suggest that GPE can activate NMDA receptors but at concentrations well above the expected concentration of GPE in the brain. Therefore, it is unlikely that endogenous GPE interacts with glutamate receptors under normal conditions.


Cell Physiology Source Book (Fourth Edition) | 2012

Ligand-gated ion channels

Kenneth R. Tovar; Gary L. Westbrook

Ligand-gated ion channels are membrane proteins that are fundamental signaling molecules in neurons. These molecules are localized in the plasmalemma and on intracellular organelles and can be gated by both intracellular and extracellular ligands. The neurotransmitter-gated ion channels discussed in this chapter mediate fast excitation and inhibition in the nervous system and have now been well characterized by physiological and molecular studies. Studies using the technique of voltage and patch-clamp recording have examined the three basic features of an ion channel: gating, conductance and selective permeability.


The Journal of Neuroscience | 2018

Preferential targeting of lateral entorhinal inputs onto newly integrated granule cells

Nicholas I. Woods; Christopher E. Vaaga; Christina Chatzi; Jaimie D. Adelson; Matthew F. Collie; Julia V. Perederiy; Kenneth R. Tovar; Gary L. Westbrook

Mature dentate granule cells in the hippocampus receive input from the entorhinal cortex via the perforant path in precisely arranged lamina, with medial entorhinal axons innervating the middle molecular layer and lateral entorhinal cortex axons innervating the outer molecular layer. Although vastly outnumbered by mature granule cells, adult-generated newborn granule cells play a unique role in hippocampal function, which has largely been attributed to their enhanced excitability and plasticity (Schmidt-Hieber et al., 2004; Ge et al., 2007). Inputs from the medial and lateral entorhinal cortex carry different informational content. Thus, the distribution of inputs onto newly integrated granule cells will affect their function in the circuit. Using retroviral labeling in combination with selective optogenetic activation of medial or lateral entorhinal inputs, we examined the functional innervation and synaptic maturation of newly generated dentate granule cells in the mouse hippocampus. Our results indicate that lateral entorhinal inputs provide the majority of functional innervation of newly integrated granule cells at 21 d postmitosis. Despite preferential functional targeting, the dendritic spine density of immature granule cells was similar in the outer and middle molecular layers, which we speculate could reflect an unequal distribution of shaft synapses. However, chronic blockade of neurotransmitter release of medial entorhinal axons with tetanus toxin disrupted normal synapse development of both medial and lateral entorhinal inputs. Our results support a role for preferential lateral perforant path input onto newly generated neurons in mediating pattern separation, but also indicate that medial perforant path input is necessary for normal synaptic development. SIGNIFICANCE STATEMENT The formation of episodic memories involves the integration of contextual and spatial information. Newly integrated neurons in the dentate gyrus of the hippocampus play a critical role in this process, despite constituting only a minor fraction of the total number of granule cells. Here we demonstrate that these neurons preferentially receive information thought to convey the context of an experience. Each newly integrated granule cell plays this unique role for ∼1 month before reaching maturity.


The Journal of Neuroscience | 1999

The Incorporation of NMDA Receptors with a Distinct Subunit Composition at Nascent Hippocampal Synapses In Vitro

Kenneth R. Tovar; Gary L. Westbrook

Collaboration


Dive into the Kenneth R. Tovar's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Ann Marie Craig

University of British Columbia

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Sabine Levi

Washington University in St. Louis

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Bryan W. Luikart

University of Texas Southwestern Medical Center

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

George R. Siggins

Scripps Research Institute

View shared research outputs
Top Co-Authors

Avatar

Gilles Martin

Scripps Research Institute

View shared research outputs
Researchain Logo
Decentralizing Knowledge