Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Kenneth S. Polonsky is active.

Publication


Featured researches published by Kenneth S. Polonsky.


Nature Genetics | 2000

Genetic variation in the gene encoding calpain-10 is associated with type 2 diabetes mellitus

Yukio Horikawa; Naohisa Oda; Nancy J. Cox; Xiangquan Li; Marju Orho-Melander; Manami Hara; Yoshinori Hinokio; Tom H. Lindner; Hirosato Mashima; Peter Schwarz; Laura del Bosque-Plata; Yohko Horikawa; Yukie Oda; Issei Yoshiuchi; Susan Colilla; Kenneth S. Polonsky; Shan Wei; Patrick Concannon; Naoko Iwasaki; Jan Schulze; Leslie J. Baier; Clifton Bogardus; Leif Groop; Eric Boerwinkle; Craig L. Hanis; Graeme I. Bell

Type 2 or non-insulin-dependent diabetes mellitus (NIDDM) is the most common form of diabetes worldwide, affecting approximately 4% of the worlds adult population. It is multifactorial in origin with both genetic and environmental factors contributing to its development. A genome-wide screen for type 2 diabetes genes carried out in Mexican Americans localized a susceptibility gene, designated NIDDM1, to chromosome 2. Here we describe the positional cloning of a gene located in the NIDDM1 region that shows association with type 2 diabetes in Mexican Americans and a Northern European population from the Botnia region of Finland. This putative diabetes-susceptibility gene encodes a ubiquitously expressed member of the calpain-like cysteine protease family, calpain-10 (CAPN10). This finding suggests a novel pathway that may contribute to the development of type 2 diabetes.


Diabetes | 1992

Estimation of Insulin Secretion Rates from C-Peptide Levels: Comparison of Individual and Standard Kinetic Parameters for C-Peptide Clearance

Eve Van Cauter; Fabienne Mestrez; Jeppe Sturis; Kenneth S. Polonsky

Insulin secretion rates can be accurately estimated from plasma C-peptide levels with a two-compartment model for C-peptide distribution and degradation. In previous studies, the kinetic parameters of C-peptide clearance were derived in each subject from the decay curve observed after bolus intravenous injection of biosynthetic human C-peptide. To determine whether standard parameters for C-peptide clearance could be defined and used to calculate insulin secretion without obtaining a decay curve in each subject, we analyzed 200 decay curves of biosynthetic human C-peptide obtained in normal, obese, and non-insulindependent diabetes mellitus subjects studied in ourlaboratory. This analysis showed that the volume of distribution and kinetic parameters of C-peptide distribution and metabolism vary by <30% in a population highly heterogenous in terms of age, sex, degree of obesity, and degree of glucose tolerance. The volume of distribution correlated with the degree of obesity as quantified by body surface area (BSA). This dependence of C-peptide distribution volume on BSA was more marked in men than in women. The long half-life was slightly longer in elderly subjects than in younger adults. When effects of BSA, sex, and age were taken into account, the parameters of C-peptide kinetics were very similar in normal, obese, and diabetic subjects. Based on these findings, a simple procedure to derive standard parameters for C-peptide clearance taking into account degree of obesity, sex, and age was defined. These standard parameters resulted in estimations of mean insulin secretion rates, which differed in each subject by only 10-12% from those obtained with individual parameters. The approach of using standard ratherthan individual parameters did not systematically underestimate or overestimate insulin secretion so that group values for the fasting secretion rate, the mean 24-h secretion rate, and the number and the amplitude of secretory pulses obtained with standard parameters differed by only 1–2% from the values obtained with individual parameters. Furthermore, the accuracy of measurements based on standard parameters was not different from that associated with replicate determinations of the parameters of C-peptide clearance in the same subject. We conclude that it is possible to estimate insulin secretion rates from plasma C-peptide levels with standard parameters for C-peptide clearance rather than individually derived parameters without significant loss of accuracy.


Journal of Clinical Investigation | 1988

Twenty-four-hour profiles and pulsatile patterns of insulin secretion in normal and obese subjects.

Kenneth S. Polonsky; Bruce D. Given; E. Van Cauter

The pattern of endogenous insulin secretion over a 24-h period, which included three mixed meals, was evaluated in 14 normal volunteers and 15 obese subjects. Insulin secretory rates were calculated from plasma C-peptide levels using individually derived C-peptide kinetic parameters and a validated open two-compartment model of peripheral C-peptide kinetics. Insulin secretion rates were consistently elevated in the obese subjects under basal conditions (11.6 +/- 1.2 vs. 5.4 +/- 0.5 nmol/h) and in the 4 h after breakfast (139 +/- 15 vs. 63 +/- 5 nmol/4 h, P less than 0.001), lunch (152 +/- 16 vs. 67 +/- 5 nmol/4 h, P less than 0.001), and dinner (145 +/- 18 vs. 65 +/- 6 nmol/4 h, P less than 0.001). In the normal subjects, basal insulin secretion represented 50 +/- 2.1% of total 24-h insulin production, insulin secretion returned to baseline between meals, and equal quantities of insulin were secreted in the 4 h after breakfast, lunch, and dinner, despite the fact that subjects consumed half the number of calories at breakfast compared to lunch and dinner. Overall glucose responses were also similar after the three meals. In contrast, the pattern of insulin secretion in obese subjects was largely normal, albeit set at a higher level. However, the insulin secretion rate after meals did not return to baseline, and the secretion rate immediately before lunch (350.5 +/- 81.9 pmol/min) and dinner (373.6 +/- 64.8 pmol/min) was considerably higher than the secretion rate immediately before breakfast (175.5 +/- 18.5 pmol/min). In these overweight subjects, the glucose response after lunch was lower than after dinner. Analysis of individual 24-h insulin secretory profiles in the normal subjects revealed that insulin secretion was pulsatile. On average 11.1 +/- 0.5 pulses were produced in each 24-h period. The most prevalent temporal distribution of postmeal secretory pulses was two pulses after breakfast and three pulses after both lunch and dinner. Insulin secretion was also pulsatile during the period without meal stimuli: 3.9 +/- 0.3 pulses occurred during the period of overnight sampling and in the 3-h period before ingestion of the breakfast meal. In the obese subjects, the number and timing of secretory pulses was similar to those of normal volunteers, although the amplitude of the pulses was significantly greater. In both groups of subjects, greater than 80% of insulin pulses were concomitant with a pulse in glucose concentration in the postmeal period. The concomitancy rate was significantly lower in the interval without the meal stimuli, averaging 47% in both groups. Thus in obesity, although hypersecretion of insulin can be documented, the temporal pattern of secretion i s largely unaltered, which suggests that the functioning beta cell mass is enhance, but normal regulatory mechanisms influencing secretion are still operative.


The New England Journal of Medicine | 1988

Abnormal Patterns of Insulin Secretion in Non-Insulin-Dependent Diabetes Mellitus

Kenneth S. Polonsky; Bruce D. Given; Laurence J. Hirsch; Hartmut Tillil; E. Timothy Shapiro; Christine A Beebe; Bruce H. Frank; J. A. Galloway; Eve Van Cauter

To determine whether non-insulin-dependent diabetes is associated with specific alterations in the pattern of insulin secretion, we studied 16 patients with untreated diabetes and 14 matched controls. The rates of insulin secretion were calculated from measurements of peripheral C-peptide in blood samples taken at 15- to 20-minute intervals during a 24-hour period in which the subjects ate three mixed meals. Incremental responses of insulin secretion to meals were significantly lower in the diabetic patients (P less than 0.005), and the increases and decreases in insulin secretion after meals were more sluggish. These disruptions in secretory response were more marked after dinner than after breakfast, and a clear secretory response to dinner often could not be identified. Both the control and diabetic subjects secreted insulin in a series of discrete pulses. In the controls, a total of seven to eight pulses were identified in the period from 9 a.m. to 11 p.m., including the three post-meal periods (an average frequency of one pulse per 105 to 120 minutes), and two to four pulses were identified in the remaining 10 hours. The number of pulses in the patients and controls did not differ significantly. However, in the patients, the pulses after meals had a smaller amplitude (P less than 0.03) and were less frequently concomitant with a glucose pulse (54.7 +/- 4.9 vs. 82.2 +/- 5.0, P less than 0.001). Pulses also appeared less regularly in the patients. During glucose clamping to produce hyperglycemia (glucose level, 16.7 mmol per liter [300 mg per deciliter]), the diabetic subjects secreted, on the average, 70 percent less insulin than matched controls (P less than 0.001). These data suggest that profound alterations in the amount and temporal organization of stimulated insulin secretion may be important in the pathophysiology of beta-cell dysfunction in diabetes.


Nature | 2001

Diabetes mellitus and genetically programmed defects in beta-cell function.

Graeme I. Bell; Kenneth S. Polonsky

The pathways that control insulin secretion and regulate pancreatic β-cell mass are crucial in the development of diabetes mellitus. Maturity-onset diabetes of the young comprises a number of single-gene disorders affecting pancreatic β-cell function, and the consequences of mutations in these genes are so serious that diabetes develops in childhood or adolescence. A genetic basis for the more common form of type 2 diabetes, which affects 10–20% of adults in many developed countries, is less clear cut. It is also characterized by abnormal β-cell function, but other tissues are involved as well. However, in both forms identification of causative and susceptibility genes are providing new insight into the control of insulin action and secretion, as well as suggesting new treatments for diabetes.


Nature Medicine | 2001

Regulation of pancreatic |[beta]|-cell growth and survival by the serine/threonine protein kinase Akt1/PKB|[alpha]|

Robyn L. Tuttle; Navdeep S. Gill; William Pugh; Jean-Pyo Lee; Brigitte Koeberlein; Emma E. Furth; Kenneth S. Polonsky; Ali Naji; Morris J. Birnbaum

The physiological performance of an organ depends on an interplay between changes in cellular function and organ size, determined by cell growth, proliferation and death. Nowhere is this more evident than in the endocrine pancreas, where disturbances in function or mass result in severe disease. Recently, the insulin signal-transduction pathway has been implicated in both the regulation of hormone secretion from β cells in mammals as well as the determination of cell and organ size in Drosophila melanogaster. A prominent mediator of the actions of insulin and insulin-like growth factor 1 (IGF-1) is the 3′-phosphoinositide–dependent protein kinase Akt, also known as protein kinase B (PKB). Here we report that overexpression of active Akt1 in the mouse β cell substantially affects compartment size and function. There was a significant increase in both β-cell size and total islet mass, accompanied by improved glucose tolerance and complete resistance to experimental diabetes.


Journal of Clinical Investigation | 1995

Insulin secretory defects in polycystic ovary syndrome. Relationship to insulin sensitivity and family history of non-insulin-dependent diabetes mellitus.

David A. Ehrmann; Jeppe Sturis; Maria Byrne; Theodore Karrison; Robert L. Rosenfield; Kenneth S. Polonsky

The increased prevalence of non-insulin-dependent diabetes mellitus (NIDDM) among women with polycystic ovary syndrome (PCOS) has been ascribed to the insulin resistance characteristic of PCOS. This study was undertaken to determine the role of defects in insulin secretion as well as familial factors to the predisposition to NIDDM seen in PCOS. We studied three groups of women: PCOS with a family history of NIDDM (PCOS FHx POS; n = 11), PCOS without a family history of NIDDM (PCOS FHx NEG; n = 13), and women without PCOS who have a family history of NIDDM (NON-PCOS FHx POS; n = 8). Beta cell function was evaluated during a frequently sampled intravenous glucose tolerance test, by a low dose graded glucose infusion, and by the ability of the beta cell to be entrained by an oscillatory glucose infusion. PCOS FHx POS women were significantly less likely to demonstrate appropriate beta cell compensation for the degree of insulin resistance. The ability of the beta cell to entrain, as judged by the spectral power for insulin secretion rate, was significantly reduced in PCOS FHx POS subjects. In conclusion, a history of NIDDM in a first-degree relative appears to define a subset of PCOS subjects with a greater prevalence of insulin secretory defects. The risk of developing NIDDM imparted by insulin resistance in PCOS may be enhanced by these defects in insulin secretion.


Diabetes | 1984

C-peptide as a measure of the secretion and hepatic extraction of insulin. Pitfalls and limitations.

Kenneth S. Polonsky; Arthur H. Rubenstein

The large and variable hepatic extraction of insulin is a major obstacle to our ability to quantitate insulin secretion accurately in human subjects. The evidence that C-peptide is secreted from the beta cell in equimolar concentration with insulin, but not extracted by the liver to any significant degree, has provided a firm scientific basis for the use of peripheral C-peptide concentrations as a semiquantitative marker of beta cell secretory activity in a variety of clinical situations. Thus, plasma C-peptide has proved to be extremely valuable in the study of the natural history of type 1 diabetes, to monitor insulin secretion in patients with insulin antibodies, and as an adjunct in the investigation of patients with hypoglycemic disorders. The use of the peripheral C-peptide concentration to accurately quantitate the rate of insulin secretion is more controversial. This is mainly because understanding of the kinetics and metabolism of C-peptide under different conditions is incomplete. Unfortunately, sufficient quantities of human C-peptide are not available to allow the experimental validation of the mathematical formulae that have been proposed for the calculation of insulin secretion from peripheral C-peptide concentrations. Until it is possible to perform such experiments, the accuracy of studies that have derived insulin secretion rates from peripheral C-peptide levels will remain uncertain. The assumption that the peripheral C-peptide:insulin molar ratio can be used as a reflection of hepatic insulin extraction has not been experimentally validated. The marked difference in the plasma half-lives of insulin and C-peptide complicates the interpretation of changes in their ratios.(ABSTRACT TRUNCATED AT 250 WORDS)


Journal of Clinical Investigation | 1988

Quantitative study of insulin secretion and clearance in normal and obese subjects.

Kenneth S. Polonsky; Bruce D. Given; Lawrence Hirsch; E. T. Shapiro; Hartmut Tillil; Christine A Beebe; J. A. Galloway; Bruce H. Frank; Theodore Karrison; E. Van Cauter

The secretion and hepatic extraction of insulin were compared in 14 normal volunteers and 15 obese subjects using a previously validated mathematical model of insulin secretion and rate constants for C-peptide derived from analysis of individual decay curves after intravenous bolus injections of biosynthetic human C-peptide. Insulin secretion rates were substantially higher than normal in the obese subjects after an overnight fast (86.7 +/- 7.1 vs. 50.9 +/- 4.8 pmol/m2 per min, P less than 0.001, mean +/- SEM), over a 24-h period on a mixed diet (279.6 +/- 24.2 vs. 145.8 +/- 8.8 nmol/m2 per 24 h, P less than 0.001), and during a hyperglycemic intravenous glucose infusion (102.2 +/- 10.8 vs. 57.2 +/- 2.8 nmol/m2 per 180 min, P less than 0.001). Linear regression analysis revealed a highly significant relationship between insulin secretion and body mass index. Basal hepatic insulin extraction was not significantly different in the normal and obese subjects (53.1 +/- 3.8 vs. 51.6 +/- 4.0%). In the normal subjects, fasting insulin did not correlate with basal hepatic insulin extraction, but a significant negative correlation between fasting insulin and hepatic insulin extraction was seen in obesity (r = -0.63, P less than 0.02). This finding reflected a higher extraction in the six obese subjects with fasting insulin levels within the range of the normal subjects than in the nine subjects with elevated fasting insulin concentrations (61 +/- 3 vs. 45 +/- 6%, P less than 0.05). During the hyperglycemic clamp, the insulin secretion rate increased to an average maximum of 6.2-fold over baseline in the normal subjects and 5.8-fold in the obese subjects. Over the same time, the peripheral insulin concentration increased 14.1-fold over baseline in the normals and 16.6-fold over baseline in the obese, indicating a reduction in the clearance of endogenously secreted insulin. Although the fall in insulin clearance tended to be greater in the obese subjects, the differences between the two groups were not statistically significant. Thus, under basal, fasting conditions and during ingestion of a mixed diet, the hyperinsulinemia of obesity results predominantly from increased insulin secretion. In patients with more marked basal hyperinsulinemia and during intense stimulation of insulin secretion, a reduction in insulin clearance may contribute to the greater increase in peripheral insulin concentrations that are characteristic of the obese state.+


Journal of Clinical Investigation | 1986

Use of biosynthetic human C-peptide in the measurement of insulin secretion rates in normal volunteers and type I diabetic patients.

Kenneth S. Polonsky; J. Licinio-Paixao; Bruce D. Given; William Pugh; Paul A. Rue; J. A. Galloway; Theodore Karrison; Bruce H. Frank

We undertook this study to examine the accuracy of plasma C-peptide as a marker of insulin secretion. The peripheral kinetics of biosynthetic human C-peptide (BHCP) were studied in 10 normal volunteers and 7 insulin-dependent diabetic patients. Each subject received intravenous bolus injections of BHCP as well as constant and variable rate infusions. After intravenous bolus injections the metabolic clearance rate of BHCP (3.8 +/- 0.1 ml/kg per min, mean +/- SEM) was not significantly different from the value obtained during its constant intravenous infusion (3.9 +/- 0.1 ml/kg per min). The metabolic clearance rate of C-peptide measured during steady state intravenous infusions was constant over a wide concentration range. During experiments in which BHCP was infused at a variable rate, the peripheral concentration of C-peptide did not change in proportion to the infusion rate. Thus, the infusion rate of BHCP could not be calculated accurately as the product of the C-peptide concentration and metabolic clearance rate. However, the non-steady infusion rate of BHCP could be accurately calculated from peripheral C-peptide concentrations using a two-compartment mathematical model when model parameters were derived from the C-peptide decay curve in each subject. Application of this model to predict constant infusions of C-peptide from peripheral C-peptide concentrations resulted in model generated estimates of the C-peptide infusion rate that were 101.5 +/- 3.4% and 100.4 +/- 2.8% of low and high dose rates, respectively. Estimates of the total quantity of C-peptide infused at a variable rate over 240 min based on the two-compartment model represented 104.6 +/- 2.4% of the amount actually infused. Application of this approach to clinical studies will allow the secretion rate of insulin to be estimated with considerable accuracy. The insulin secretion rate in normal subjects after an overnight fast was 89.1 pmol/min, which corresponds with a basal 24-h secretion of 18.6 U.

Collaboration


Dive into the Kenneth S. Polonsky's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

A H Rubenstein

University of Washington

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge