Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Kenneth S. Thress is active.

Publication


Featured researches published by Kenneth S. Thress.


Nature Medicine | 2015

Acquired EGFR C797S mutation mediates resistance to AZD9291 in non–small cell lung cancer harboring EGFR T790M

Kenneth S. Thress; Cloud P. Paweletz; Enriqueta Felip; Byoung Chul Cho; Daniel Stetson; Brian Dougherty; Zhongwu Lai; Aleksandra Markovets; Ana Vivancos; Yanan Kuang; Dalia Ercan; Sarah E Matthews; Mireille Cantarini; J. Carl Barrett; Pasi A. Jänne; Geoffrey R. Oxnard

Here we studied cell-free plasma DNA (cfDNA) collected from subjects with advanced lung cancer whose tumors had developed resistance to the epidermal growth factor receptor (EGFR) tyrosine kinase inhibitor (TKI) AZD9291. We first performed next-generation sequencing of cfDNA from seven subjects and detected an acquired EGFR C797S mutation in one; expression of this mutant EGFR construct in a cell line rendered it resistant to AZD9291. We then performed droplet digital PCR on serial cfDNA specimens collected from 15 AZD9291-treated subjects. All were positive for the T790M mutation before treatment, but upon developing AZD9291 resistance three molecular subtypes emerged: six cases acquired the C797S mutation, five cases maintained the T790M mutation but did not acquire the C797S mutation and four cases lost the T790M mutation despite the presence of the underlying EGFR activating mutation. Our findings provide insight into the diversity of mechanisms through which tumors acquire resistance to AZD9291 and highlight the need for therapies that are able to overcome resistance mediated by the EGFR C797S mutation.


Journal of Clinical Oncology | 2016

Association Between Plasma Genotyping and Outcomes of Treatment With Osimertinib (AZD9291) in Advanced Non–Small-Cell Lung Cancer

Geoffrey R. Oxnard; Kenneth S. Thress; Ryan S. Alden; Rachael Lawrance; Cloud P. Paweletz; Mireille Cantarini; James Chih-Hsin Yang; J. Carl Barrett; Pasi A. Jänne

PURPOSE Third-generation epidermal growth factor receptor (EGFR) tyrosine kinase inhibitors (TKIs) have demonstrated potent activity against TKI resistance mediated by EGFR T790M. We studied whether noninvasive genotyping of cell-free plasma DNA (cfDNA) is a useful biomarker for prediction of outcome from a third-generation EGFR-TKI, osimertinib. METHODS Plasma was collected from all patients in the first-in-man study of osimertinib. Patients who were included had acquired EGFR-TKI resistance and evidence of a common EGFR-sensitizing mutation. Genotyping of cell-free plasma DNA was performed by using BEAMing. Plasma genotyping accuracy was assessed by using tumor genotyping from a central laboratory as reference. Objective response rate (ORR) and progression-free survival (PFS) were analyzed in all T790M-positive or T790M-negative patients. RESULTS Sensitivity of plasma genotyping for detection of T790M was 70%. Of 58 patients with T790M-negative tumors, T790M was detected in plasma of 18 (31%). ORR and median PFS were similar in patients with T790M-positive plasma (ORR, 63%; PFS, 9.7 months) or T790M-positive tumor (ORR, 62%; PFS, 9.7 months) results. Although patients with T790M-negative plasma had overall favorable outcomes (ORR, 46%; median PFS, 8.2 months), tumor genotyping distinguished a subset of patients positive for T790M who had better outcomes (ORR, 69%; PFS, 16.5 months) as well as a subset of patients negative for T790M with poor outcomes (ORR, 25%; PFS, 2.8 months). CONCLUSION In this retrospective analysis, patients positive for T790M in plasma have outcomes with osimertinib that are equivalent to patients positive by a tissue-based assay. This study suggests that, upon availability of validated plasma T790M assays, some patients could avoid a tumor biopsy for T790M genotyping. As a result of the 30% false-negative rate of plasma genotyping, those with T790M-negative plasma results still need a tumor biopsy to determine presence or absence of T790M.


Lung Cancer | 2015

EGFR mutation detection in ctDNA from NSCLC patient plasma: A cross-platform comparison of leading technologies to support the clinical development of AZD9291.

Kenneth S. Thress; Roz Brant; T. Hedley Carr; Simon Dearden; Suzanne Jenkins; Helen Brown; Tracey Hammett; Mireille Cantarini; J. Carl Barrett

OBJECTIVES To assess the ability of different technology platforms to detect epidermal growth factor receptor (EGFR) mutations, including T790M, from circulating tumor DNA (ctDNA) in advanced non-small cell lung cancer (NSCLC) patients. MATERIALS AND METHODS A comparison of multiple platforms for detecting EGFR mutations in plasma ctDNA was undertaken. Plasma samples were collected from patients entering the ongoing AURA trial (NCT01802632), investigating the safety, tolerability, and efficacy of AZD9291 in patients with EGFR-sensitizing mutation-positive NSCLC. Plasma was collected prior to AZD9291 dosing but following clinical progression on a previous EGFR-tyrosine kinase inhibitor (TKI). Extracted ctDNA was analyzed using two non-digital platforms (cobas(®) EGFR Mutation Test and therascreen™ EGFR amplification refractory mutation system assay) and two digital platforms (Droplet Digital™ PCR and BEAMing digital PCR [dPCR]). RESULTS Preliminary assessment (38 samples) was conducted using all four platforms. For EGFR-TKI-sensitizing mutations, high sensitivity (78-100%) and specificity (93-100%) were observed using tissue as a non-reference standard. For the T790M mutation, the digital platforms outperformed the non-digital platforms. Subsequent assessment using 72 additional baseline plasma samples was conducted using the cobas(®) EGFR Mutation Test and BEAMing dPCR. The two platforms demonstrated high sensitivity (82-87%) and specificity (97%) for EGFR-sensitizing mutations. For the T790M mutation, the sensitivity and specificity were 73% and 67%, respectively, with the cobas(®) EGFR Mutation Test, and 81% and 58%, respectively, with BEAMing dPCR. Concordance between the platforms was >90%, showing that multiple platforms are capable of sensitive and specific detection of EGFR-TKI-sensitizing mutations from NSCLC patient plasma. CONCLUSION The cobas(®) EGFR Mutation Test and BEAMing dPCR demonstrate a high sensitivity for T790M mutation detection. Genomic heterogeneity of T790M-mediated resistance may explain the reduced specificity observed with plasma-based detection of T790M mutations versus tissue. These data support the use of both platforms in the AZD9291 clinical development program.


Clinical Cancer Research | 2016

Preclinical Comparison of Osimertinib with Other EGFR-TKIs in EGFR-Mutant NSCLC Brain Metastases Models, and Early Evidence of Clinical Brain Metastases Activity

Peter Ballard; James W.T. Yates; Zhenfan Yang; Dong-Wan Kim; James Chih-Hsin Yang; Mireille Cantarini; Kathryn Pickup; Angela Jordan; Mike J Hickey; Matthew Grist; Matthew R. Box; Peter Johnström; Katarina Varnäs; Jonas Malmquist; Kenneth S. Thress; Pasi A. Jänne; Darren Cross

Purpose: Approximately one-third of patients with non–small cell lung cancer (NSCLC) harboring tumors with EGFR-tyrosine kinase inhibitor (TKI)-sensitizing mutations (EGFRm) experience disease progression during treatment due to brain metastases. Despite anecdotal reports of EGFR-TKIs providing benefit in some patients with EGFRm NSCLC brain metastases, there is a clinical need for novel EGFR-TKIs with improved efficacy against brain lesions. Experimental Design: We performed preclinical assessments of brain penetration and activity of osimertinib (AZD9291), an oral, potent, irreversible EGFR-TKI selective for EGFRm and T790M resistance mutations, and other EGFR-TKIs in various animal models of EGFR-mutant NSCLC brain metastases. We also present case reports of previously treated patients with EGFRm-advanced NSCLC and brain metastases who received osimertinib in the phase I/II AURA study (NCT01802632). Results: Osimertinib demonstrated greater penetration of the mouse blood–brain barrier than gefitinib, rociletinib (CO-1686), or afatinib, and at clinically relevant doses induced sustained tumor regression in an EGFRm PC9 mouse brain metastases model; rociletinib did not achieve tumor regression. Under positron emission tomography micro-dosing conditions, [11C]osimertinib showed markedly greater exposure in the cynomolgus monkey brain than [11C]rociletinib and [11C]gefitinib. Early clinical evidence of osimertinib activity in previously treated patients with EGFRm-advanced NSCLC and brain metastases is also reported. Conclusions: Osimertinib may represent a clinically significant treatment option for patients with EGFRm NSCLC and brain metastases. Further investigation of osimertinib in this patient population is ongoing. Clin Cancer Res; 22(20); 5130–40. ©2016 AACR.


Cancer Research | 2015

Acquired Resistance to the Mutant-Selective EGFR Inhibitor AZD9291 Is Associated with Increased Dependence on RAS Signaling in Preclinical Models

Catherine Eberlein; Daniel Stetson; Aleksandra Markovets; Katherine Al-Kadhimi; Zhongwu Lai; Paul Fisher; Catherine B. Meador; Paula Spitzler; Eiki Ichihara; Sarah Ross; Miika Ahdesmaki; Ambar Ahmed; Laura Ratcliffe; Elizabeth L. Christey O'Brien; Claire Barnes; Henry Brown; Paul D. Smith; Jonathan R. Dry; Garry Beran; Kenneth S. Thress; Brian Dougherty; William Pao; Darren Cross

Resistance to targeted EGFR inhibitors is likely to develop in EGFR-mutant lung cancers. Early identification of innate or acquired resistance mechanisms to these agents is essential to direct development of future therapies. We describe the detection of heterogeneous mechanisms of resistance within populations of EGFR-mutant cells (PC9 and/or NCI-H1975) with acquired resistance to current and newly developed EGFR tyrosine kinase inhibitors, including AZD9291. We report the detection of NRAS mutations, including a novel E63K mutation, and a gain of copy number of WT NRAS or WT KRAS in cell populations resistant to gefitinib, afatinib, WZ4002, or AZD9291. Compared with parental cells, a number of resistant cell populations were more sensitive to inhibition by the MEK inhibitor selumetinib (AZD6244; ARRY-142886) when treated in combination with the originating EGFR inhibitor. In vitro, a combination of AZD9291 with selumetinib prevented emergence of resistance in PC9 cells and delayed resistance in NCI-H1975 cells. In vivo, concomitant dosing of AZD9291 with selumetinib caused regression of AZD9291-resistant tumors in an EGFRm/T790M transgenic model. Our data support the use of a combination of AZD9291 with a MEK inhibitor to delay or prevent resistance to AZD9291 in EGFRm and/or EGFRm/T790M tumors. Furthermore, these findings suggest that NRAS modifications in tumor samples from patients who have progressed on current or EGFR inhibitors in development may support subsequent treatment with a combination of EGFR and MEK inhibition.


Journal of Clinical Oncology | 2017

Osimertinib As First-Line Treatment of EGFR Mutation–Positive Advanced Non–Small-Cell Lung Cancer

Suresh S. Ramalingam; James Chih-Hsin Yang; Chee Khoon Lee; Takayasu Kurata; Dong-Wan Kim; Thomas John; Naoyuki Nogami; Yuichiro Ohe; Helen Mann; Yuri Rukazenkov; Serban Ghiorghiu; Daniel Stetson; Aleksandra Markovets; Barrett Jc; Kenneth S. Thress; Pasi A. Jänne

Purpose The AURA study ( ClinicalTrials.gov identifier: NCT01802632) included two cohorts of treatment-naïve patients to examine clinical activity and safety of osimertinib (an epidermal growth factor receptor [EGFR] -tyrosine kinase inhibitor selective for EGFR-tyrosine kinase inhibitor sensitizing [ EGFRm] and EGFR T790M resistance mutations) as first-line treatment of EGFR-mutated advanced non-small-cell lung cancer (NSCLC). Patients and Methods Sixty treatment-naïve patients with locally advanced or metastatic EGFRm NSCLC received osimertinib 80 or 160 mg once daily (30 patients per cohort). End points included investigator-assessed objective response rate (ORR), progression-free survival (PFS), and safety evaluation. Plasma samples were collected at or after patients experienced disease progression, as defined by Response Evaluation Criteria in Solid Tumors (RECIST), to investigate osimertinib resistance mechanisms. Results At data cutoff (November 1, 2016), median follow-up was 19.1 months. Overall ORR was 67% (95% CI, 47% to 83%) in the 80-mg group, 87% (95% CI, 69% to 96%) in the 160-mg group, and 77% (95% CI, 64% to 87%) across doses. Median PFS time was 22.1 months (95% CI, 13.7 to 30.2 months) in the 80-mg group, 19.3 months (95% CI, 13.7 to 26.0 months) in the 160-mg group, and 20.5 months (95% CI, 15.0 to 26.1 months) across doses. Of 38 patients with postprogression plasma samples, 50% had no detectable circulating tumor DNA. Nine of 19 patients had putative resistance mechanisms, including amplification of MET (n = 1); amplification of EGFR and KRAS (n = 1); MEK1, KRAS, or PIK3CA mutation (n = 1 each); EGFR C797S mutation (n = 2); JAK2 mutation (n = 1); and HER2 exon 20 insertion (n = 1). Acquired EGFR T790M was not detected. Conclusion Osimertinib demonstrated a robust ORR and prolonged PFS in treatment-naïve patients with EGFRm advanced NSCLC. There was no evidence of acquired EGFR T790M mutation in postprogression plasma samples.


Molecular Cancer Therapeutics | 2009

Identification and preclinical characterization of AZ-23, a novel, selective, and orally bioavailable inhibitor of the Trk kinase pathway

Kenneth S. Thress; Terry MacIntyre; Haiyun Wang; Dave Whitston; Zhong Ying Liu; Ethan Hoffmann; Tao Wang; Jeffrey L. Brown; Kevin R. Webster; Charles A. Omer; Peter E. Zage; Lizhi Zeng; Patrick A. Zweidler-McKay

Tropomyosin-related kinases (TrkA, TrkB, and TrkC) are receptor tyrosine kinases that, along with their ligands, the neurotrophins, are involved in neuronal cell growth, development, and survival. The Trk-neurotrophin pathway may also play a role in tumorigenesis through oncogenic fusions, mutations, and autocrine signaling, prompting the development of novel Trk inhibitors as agents for cancer therapy. This report describes the identification of AZ-23, a novel, potent, and selective Trk kinase inhibitor. In vitro studies with AZ-23 showed improved selectivity over previous compounds and inhibition of Trk kinase activity in cells at low nanomolar concentrations. AZ-23 showed in vivo TrkA kinase inhibition and efficacy in mice following oral administration in a TrkA-driven allograft model and significant tumor growth inhibition in a Trk-expressing xenograft model of neuroblastoma. AZ-23 represents a potent and selective Trk kinase inhibitor from a novel series with the potential for use as a treatment for cancer. [Mol Cancer Ther 2009;8(7):1818–27]


Oncotarget | 2017

Guide to detecting epidermal growth factor receptor ( EGFR ) mutations in ctDNA of patients with advanced non-small-cell lung cancer

Nicola Normanno; M. G. Denis; Kenneth S. Thress; Marianne Ratcliffe; Martin Reck

Cancer treatment is evolving towards therapies targeted at specific molecular abnormalities that drive tumor growth. Consequently, to determine which patients are eligible, accurate assessment of molecular aberrations within tumors is required. Obtaining sufficient tumor tissue for molecular testing can present challenges; therefore, circulating free tumor-derived DNA (ctDNA) found in blood plasma has been proposed as an alternative source of tumor DNA. The diagnostic utility of ctDNA for the detection of epidermal growth factor receptor (EGFR) mutations harbored in tumors of patients with advanced non-small-cell lung cancer (NSCLC) is supported by the results of several large studies/meta-analyses. However, recent real-world studies suggest that the performance of ctDNA testing varies between geographic regions/laboratories, demonstrating the need for standardized guidance. In this review, we outline recommendations for obtaining an accurate result using ctDNA, relating to pre-analytical plasma processing, ctDNA extraction, and appropriate EGFR mutation detection methods, based on clinical trial results. We conclude that there are several advantages associated with ctDNA, including the potential for repeated sampling particularly following progression after first-line tyrosine kinase inhibitor (TKI) therapy, as TKIs targeting resistance mutations (eg T790M) are now approved for use in the USA/EU/Japan (at time of writing). However, evidence suggests that ctDNA does not allow detection of EGFR mutations in all patients with known mutation-positive NSCLC. Therefore, although tumor tissue should be the first sample choice for EGFR testing at diagnosis, ctDNA is a promising alternative diagnostic approach.


Clinical Cancer Research | 2015

Reproducible, Quantitative, and Flexible Molecular Subtyping of Clinical DLBCL Samples Using the NanoString nCounter System

Margaret Veldman-Jones; Zhongwu Lai; Mark Wappett; Chris Harbron; J. Carl Barrett; Elizabeth A. Harrington; Kenneth S. Thress

Purpose: Diffuse large B-cell lymphoma (DLBCL) is a heterogeneous disease with distinct molecular subtypes. The most established subtyping approach, the “Cell of Origin” (COO) algorithm, categorizes DLBCL into activated B-cell (ABC) and germinal center B-cell (GCB)-like subgroups through gene expression profiling. Recently developed immunohistochemical (IHC) techniques and other established methodologies can deliver discordant results and have various technical limitations. We evaluated the NanoString nCounter gene expression system to address issues with current platforms. Experimental Design: We devised a scoring system using 145 genes from published datasets to categorize DLBCL samples. After cell line validation, clinical tissue segmentation was tested using commercially available diagnostic DLBCL samples. Finally, we profiled biopsies from patients with relapsed/refractory DLBCL enrolled in the fostamatinib phase IIb clinical trial using three independent RNA expression platforms: NanoString, Affymetrix, and qNPA. Results: Diagnostic samples showed a typical spread of subtypes with consistent gene expression profiles across matched fresh, frozen, and formalin-fixed paraffin-embedded tissues. Results from biopsy samples across platforms were remarkably consistent, in contrast to published IHC data. Interestingly, COO segmentation of longitudinal fostamatinib biopsies taken at initial diagnosis and then again at primary relapse showed 88% concordance (15/17), suggesting that COO designation remains stable over the course of disease progression. Conclusions: DLBCL segmentation of patient tumor samples is possible using a number of expression platforms. However, we found that NanoString offers the most flexibility and fewest limitations in regards to robust clinical tissue subtype characterization. These subtype distinctions should help guide disease prognosis and treatment options within DLBCL clinical practice. Clin Cancer Res; 21(10); 2367–78. ©2014 AACR. See related commentary by Rimsza, p. 2204


European Journal of Cancer | 2016

A phase II trial to evaluate the efficacy of fostamatinib in patients with relapsed or refractory diffuse large B-cell lymphoma (DLBCL)

Ian W. Flinn; Nancy L. Bartlett; Kristie A. Blum; Kirit M. Ardeshna; Ann S. LaCasce; Christopher R. Flowers; Andrei R. Shustov; Kenneth S. Thress; Patrick D. Mitchell; Fred Zheng; Jeffrey M. Skolnik; Jonathan W. Friedberg

PURPOSE To assess the safety and efficacy of fostamatinib in patients with relapsed or refractory diffuse large B-cell lymphoma (DLBCL). EXPERIMENTAL DESIGN Relapsed or refractory DLBCL patients originally received the oral spleen tyrosine kinase inhibitor, fostamatinib in a two-arm, randomised, double-blinded manner at either 100 mg twice a day (BID) or 200 mg BID until disease progression or unacceptable toxicity. The primary objective was to assess the overall response rate (ORR). Preliminary analysis showed limited efficacy and all subsequent patients were treated at 200 mg BID. Previously randomised patients were unblinded and given the opportunity to receive 200 mg BID. RESULTS Sixty-eight patients were treated (47 at 200 mg BID, 21 at 100 mg BID). Cell of origin analysis showed 58% germinal B-cell (GCB) origin, 30% activated B-cell (ABC) origin and 12% with an intermediate cell of origin signature. The most common treatment-related adverse events of all patients were diarrhoea (21% total, 6% grade 3/4), nausea (19% total, 3% grade 3/4), and, fatigue (18% total, 9% grade 3/4). The ORR rate was 3% across both arms and clinical benefit (≥ stable disease) was achieved for 13% of all patients. The cell of origin for patients with clinical benefit was GCB (4 patients), intermediate (4 patients) or unknown (1 patient). None of the patients with clinical benefit had ABC genotype. CONCLUSIONS While fostamatinib was generally well tolerated in this patient population, efficacy at these doses and schedule was poor. Unlike data with other B-cell antigen receptor pathway inhibitors, responses were not observed in the ABC genotype.

Collaboration


Dive into the Kenneth S. Thress's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge