Kenneth T. Koga
Blaise Pascal University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Kenneth T. Koga.
Nature | 2013
Rita A. Cabral; Matthew G. Jackson; Estelle F. Rose-Koga; Kenneth T. Koga; Martin J. Whitehouse; Michael A. Antonelli; James Farquhar; James M. D. Day; Erik H. Hauri
Basaltic lavas erupted at some oceanic intraplate hotspot volcanoes are thought to sample ancient subducted crustal materials. However, the residence time of these subducted materials in the mantle is uncertain and model-dependent, and compelling evidence for their return to the surface in regions of mantle upwelling beneath hotspots is lacking. Here we report anomalous sulphur isotope signatures indicating mass-independent fractionation (MIF) in olivine-hosted sulphides from 20-million-year-old ocean island basalts from Mangaia, Cook Islands (Polynesia), which have been suggested to sample recycled oceanic crust. Terrestrial MIF sulphur isotope signatures (in which the amount of fractionation does not scale in proportion with the difference in the masses of the isotopes) were generated exclusively through atmospheric photochemical reactions until about 2.45 billion years ago. Therefore, the discovery of MIF sulphur in these young plume lavas suggests that sulphur—probably derived from hydrothermally altered oceanic crust—was subducted into the mantle before 2.45 billion years ago and recycled into the mantle source of Mangaia lavas. These new data provide evidence for ancient materials, with negative Δ33S values, in the mantle source for Mangaia lavas. Our data also complement evidence for recycling of the sulphur content of ancient sedimentary materials to the subcontinental lithospheric mantle that has been identified in diamond-hosted sulphide inclusions. This Archaean age for recycled oceanic crust also provides key constraints on the length of time that subducted crustal material can survive in the mantle, and on the timescales of mantle convection from subduction to upwelling beneath hotspots.
Geochemistry Geophysics Geosystems | 2014
Rita A. Cabral; Matthew G. Jackson; Kenneth T. Koga; Estelle F. Rose-Koga; Erik H. Hauri; Martin J. Whitehouse; Allison A. Price; James M. D. Day; Nobumichi Shimizu; Katherine A. Kelley
Mangaia hosts the most radiogenic Pb-isotopic compositions observed in ocean island basalts and represents the HIMU (high µ = 238U/204Pb) mantle end-member, thought to result from recycled oceanic crust. Complete geochemical characterization of the HIMU mantle end-member has been inhibited due to a lack of deep submarine glass samples from HIMU localities. We homogenized olivine-hosted melt inclusions separated from Mangaia lavas and the resulting glassy inclusions made possible the first volatile abundances to be obtained from the HIMU mantle end-member. We also report major and trace element abundances and Pb-isotopic ratios on the inclusions, which have HIMU isotopic fingerprints. We evaluate the samples for processes that could modify the volatile and trace element abundances postmantle melting, including diffusive Fe and H2O loss, degassing, and assimilation. H2O/Ce ratios vary from 119 to 245 in the most pristine Mangaia inclusions; excluding an inclusion that shows evidence for assimilation, the primary magmatic H2O/Ce ratios vary up to ∼200, and are consistent with significant dehydration of oceanic crust during subduction and long-term storage in the mantle. CO2 concentrations range up to 2346 ppm CO2 in the inclusions. Relatively high CO2 in the inclusions, combined with previous observations of carbonate blebs in other Mangaia melt inclusions, highlight the importance of CO2 for the generation of the HIMU mantle. F/Nd ratios in the inclusions (30 ± 9; 2σ standard deviation) are higher than the canonical ratio observed in oceanic lavas, and Cl/K ratios (0.079 ± 0.028) fall in the range of pristine mantle (0.02–0.08).
Journal of Geophysical Research | 2011
Mélanie Chollet; Isabelle Daniel; Kenneth T. Koga; Guillaume Morard; Bertrand Van de Moortèle
Properties of serpentine minerals are thought to influence the occurrence and location of intermediate‐depth seismicity in subduction zones, which is often characterized by two dipping planes separated by ∼30 km defining a double seismic zone. The seismicity of the lower plane is believed to be provoked by the dehydration of serpentine since the experimentally determined stability limit for antigorite matches hypocenter locations. This requires that the fluid produced by dehydration is released much faster than the typical time scale of ductile deformation mechanisms. Here we measured the kinetics of antigorite dehydration in situ at high pressure and high temperature by time‐resolved synchrotron X‐ray diffraction in a closed system. Antigorite dehydrates in two steps. During step 1 it partially breaks down into olivine and a hydrous phyllosilicate closely related to the 10 A phase. The modal abundance of the intermediate assemblage is described by 66 wt % antigorite, 19 wt % olivine, 12 wt % 10 A phase. During step 2 at higher temperature, the remaining antigorite and the 10 A phase fully dehydrate. From the analysis of reaction progress data, we determined that the major release of aqueous fluid occurs during step 2 at a fast rate of 10−4 mfluid 3 mrock −3 s−1. This exceeds by orders of magnitude the typical time scale of deformation by ductile mechanisms of any mineral or rock in the subducting slab or in the overlying mantle wedge. These results suggest that the fast dehydration of antigorite may well trigger the seismicity of the lower plane of the double seismic zone.
Earth, Planets and Space | 2014
Estelle F. Rose-Koga; Kenneth T. Koga; Morihisa Hamada; Thomas Hélouis; Martin J. Whitehouse; Nobumichi Shimizu
Investigation of olivine-hosted melt inclusions provides information about the abundance of volatile elements that are often lost during subaerial eruptions of lavas. We have measured the abundances of H2O, CO2, F, Cl, and S as well as Pb isotopes in 29 melt inclusions in the scoria of the 1686 eruption of the Iwate volcano, a frontal-arc volcano in the northeast Japan arc. Pb Isotope compositions identify that Iwate magma is derived from a mixture of depleted mantle, subducted basalt, and sediment. Systematics of F in comparison to MORB and other arc magma indicates that (1) the slab surface temperature must be among the lowest on Earth and (2) hydrous minerals, such as amphibole, humites, and/or mica, must be present as residual phases during the dehydration of the slab.
Geochemistry Geophysics Geosystems | 2015
Matthew G. Jackson; Kenneth T. Koga; Allison A. Price; J. G. Konter; Anthony A. P. Koppers; V. A. Finlayson; Kevin Konrad; Erik H. Hauri; A. Kylander-Clark; Katherine A. Kelley; Mark A. Kendrick
Ocean island basalts (OIB) with extremely radiogenic Pb-isotopic signatures are melts of a mantle component called HIMU (high µ, high 238U/204Pb). Until now, deeply dredged submarine HIMU glasses have not been available, which has inhibited complete geochemical (in particular, volatile element) characterization of the HIMU mantle. We report major, trace and volatile element abundances in a suite of deeply dredged glasses from the Tuvalu Islands. Three Tuvalu glasses with the most extreme HIMU signatures have F/Nd ratios (35.6 ± 3.6) that are higher than the ratio (∼21) for global OIB and MORB, consistent with elevated F/Nd ratios in end-member HIMU Mangaia melt inclusions. The Tuvalu glasses with the most extreme HIMU composition have Cl/K (0.11–0.12), Br/Cl (0.0024), and I/Cl (5–6 × 10−5) ratios that preclude significant assimilation of seawater-derived Cl. The new HIMU glasses that are least degassed for H2O have low H2O/Ce ratios (75–84), similar to ratios identified in end-member OIB glasses with EM1 and EM2 signatures, but significantly lower than H2O/Ce ratios (119–245) previously measured in melt inclusions from Mangaia. CO2-H2O equilibrium solubility models suggest that these HIMU glasses (recovered in two different dredges at 2500–3600 m water depth) have eruption pressures of 295–400 bars. We argue that degassing is unlikely to significantly reduce the primary melt H2O. Thus, the lower H2O/Ce in the HIMU Tuvalu glasses is a mantle signature. We explore oceanic crust recycling as the origin of the low H2O/Ce (∼50–80) in the EM1, EM2, and HIMU mantle domains.
Geochemistry Geophysics Geosystems | 2005
Kenneth T. Koga; Isabelle Daniel; Bruno Reynard
A refined approach for the experimental determination of fluid composition at elevated pressure and temperature conditions is developed. It effectively determines partition coefficients of trace elements between aqueous fluid and minerals. This approach is developed on top of many previously known technical achievements. However, it differs from the previous ones by the use of calibrated base and acid leaching of quenched samples to strip off the precipitates formed from the fluid during the quench. This permits the reconstruction of a fluid composition from an experimental charge that consists of a complete mixture of solid and fluid phases. This is a significant difference from the previous analogous studies, in which the fluid was separated from the solids all through the experiment. Mass balance calculations and error propagation assess the merits of the present method applied to a fluid-antigorite system.
Archive | 2018
Jacob J. Hanley; Kenneth T. Koga
The aims of this review chapter are to (i) summarize the distribution of halogens in different fluid (surficial, formation and crystalline shield waters, metamorphic, magmatic-hydrothermal-geothermal) and solid (oceanic and continental crust, mantle and core) domains of the Earth, and various extra-terrestrial materials and bodies (meteorites, planets and moons, and the Sun); (ii) briefly discuss characteristic fractionation processes; and direct the reader to other chapters in this volume; (iii) provide an estimate of the total halogen abundance for the Earth and in its dominant reservoirs contributing to the Earth’s halogen endowment; and (iv) discuss some missing observations that could further improve our understanding of halogen abundances and geochemical systematics. Determination of the distribution of the non-radioactive halogen elements (fluorine, F; chlorine, Cl; bromine, Br; and iodine, I) in, and the geochemical processes controlling their mass transfer between, solid and fluid repositories on Earth and in extraterrestrial environments has seen increasing attention in recent years. In part, this has been enabled by the development of dedicated analytical methodologies (e.g., in situ beam methods, secondary ion mass-spectrometer [SIMS], laser ablation-inductively coupled mass-spectrometer [LA-ICPMS], combined noble gas-halogen methods) that can provide a low detection level, accurate and precise determinations of halogen concentrations, and their isotope systematics in complex matrices (e.g., fluid inclusions, glasses, and minerals). However, a key motivation for this method development stems from an increased awareness of the value in halogen characterization for studying specific processes in Earth’s hydrosphere, crust, mantle, and core (e.g., crustal and mantle metasomatism; ore metal transfer; magmatic differentiation and volatile exsolution; fluid reservoir contamination and fluid mixing; mineral-melt-fluid partitioning; and basinal fluid evolution) in which the chemical and isotopic properties of the halogens provide significant advantages over other element groups. These properties include their (i) differential (i.e., temperature- and melt composition-dependent) incompatibility during fluid-melt and mineral-melt partitioning; (ii) collectively highly mobile and volatile nature but with only a few processes capable of fractionating the halogens from one another or leading to significant halogen mass transfer from one repository to another (e.g., the formation of evaporites, fluid phase separation [immiscibility, boiling], crystallization and degassing of magmas, subduction devolatilization and metamorphism); and (iii) strong systematic covariance of Cl and Br, but commonly differential behaviors of F and I (in response to organic processes) in most fluids in the hydrosphere, sediments, crustal rocks in general, the mantle, and mantle-derived lavas. Mass balance calculations show that F is dominantly hosted by mantle and crust, while Cl and Br show nearly identical distribution patterns in which a total of the seawater, formation waters, and evaporites comprise more than half of the Earth’s halogen budget. Experimentally determined metal-silicate partition coefficients suggest that a significant quantity of I is potentially hosted by the Earth’s core.
Bulletin of Volcanology | 2017
Andrew J. L. Harris; Alexander Belousov; Sonia Calvari; Hugo Delgado-Granados; Matthias Hort; Kenneth T. Koga; Estuning Tyas Wulan Mei; Agung Harijoko; José Pacheco; Jean-Marie Prival; Carmen Solana; Þorvaldur Þórðarson; Jean-Claude Thouret; Benjamin van Wyk de Vries
When teaching at a non-English language university, we often argue that because English is the international language, students need to become familiar with English terms, even if the bulk of the class is in the native language. However, to make the meaning of the terms clear, a translation into the native language is always useful. Correct translation of terminology is even more crucial for emergency managers and decision makers who can be confronted with a confusing and inconsistently applied mix of terminology. Thus, it is imperative to have a translation that appropriately converts the meaning of a term, while being grammatically and lexicologically correct, before the need for use. If terms are not consistently defined across all languages following industry standards and norms, what one person believes to be a dog, to another is a cat. However, definitions and translations of English scientific and technical terms are not always available, and language is constantly evolving. We live and work in an international world where English is the common language of multi-cultural exchange. As a result, while finding the correct translation can be difficult because we are too used to the English language terms, translated equivalents that are available may not have been through the peer review process. We have explored this issue by discussing grammatically and lexicologically correct French, German, Icelandic, Indonesian, Italian, Portuguese, Russian, Spanish, and Japanese versions for terms involved in communicating effusive eruption intensity.
Computers & Geosciences | 2018
Célia Dalou; J. Boulon; Kenneth T. Koga; Robert Dalou; Robert L. Dennen
Modeling trace element partition coefficients using the lattice strain model is a powerful tool for understanding the effects of P-T conditions and mineral and melt compositions on partition coefficients, thus significantly advancing the geochemical studies of trace element distributions in nature. In this model, partition coefficients describe the strain caused by a volume change upon cation substitution in the crystal lattice. In some mantle minerals, divalent, trivalent, and tetravalent trace element cations are mainly substituted in one specific site. Lattice strain model parameters, for instance in olivine and plagioclase, are thus fit for one crystal site. However, trace element cations can be substituted in two sites in the cases of pyroxenes, garnets, amphiboles, micas, or epidote-group minerals. To thoroughly study element partitioning in those minerals, one must consider the lattice strain parameters of the two sites. In this paper, we present a user-friendly executable program, working on PC, Linux, and Macintosh, to fit a lattice strain model by an error-weighted differential-evolution-constrained algorithm (Storn, R., and Price, K. 1997. Differential evolution - A simple and efficient heuristic for global optimization over continuous spaces. Journal of Global Optimization 11, 341–359). This optimization procedure is called DOUBLE FIT and is available for download on http://celiadalou.wixsite.com/website/double-fit-program. DOUBLE FIT generates single or double parabolas fitting experimentally determined trace element partition coefficients using a very limited amount of data (at minimum six experimental data points) and accounting for data uncertainties. It is the fastest calculation available to obtain the best-fit lattice strain parameters while accounting for the elastic response of two different sites to trace element substitution in various minerals.
Contributions to Mineralogy and Petrology | 2010
Pierre Schiano; Michel Monzier; Jean-Philippe Eissen; Hervé Martin; Kenneth T. Koga