Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Kenneth W. Gross is active.

Publication


Featured researches published by Kenneth W. Gross.


The EMBO Journal | 1997

An scl gene product lacking the transactivation domain induces bony abnormalities and cooperates with LMO1 to generate T-cell malignancies in transgenic mice

Peter D. Aplan; Craig A. Jones; David S. Chervinsky; Xian-Feng Zhao; MaryKay Ellsworth; Chuanzen Wu; Elizabeth A. McGuire; Kenneth W. Gross

The product of the scl (also called tal‐1 or TCL5) gene is a basic domain, helix–loop–helix (bHLH) transcription factor required for the development of hematopoietic cells. Additionally, scl gene disruption and dysregulation, by either chromosomal translocations or a site‐specific interstitial deletion whereby 5′ regulatory elements of the sil gene become juxtaposed to the body of the scl gene, is associated with T‐cell acute lymphoblastic leukemia (ALL) and T‐cell lymphoblastic lymphoma. Here we show that an inappropriately expressed scl protein, driven by sil regulatory elements, can cause aggressive T‐cell malignancies in collaboration with a misexpressed LMO1 protein, thus recapitulating the situation seen in a subset of human T–cell ALL. Moreover, we show that inappropriately expressed scl can interfere with the development of other tissues derived from mesoderm. Lastly, we show that an scl construct lacking the scl transactivation domain collaborates with misexpressed LMO1, demonstrating that the scl transactivation domain is dispensable for oncogenesis, and supporting the hypothesis that the scl gene product exerts its oncogenic action through a dominant‐negative mechanism.


Hypertension | 1984

Tissue and gene specificity of mouse renin expression.

Loren J. Field; R A McGowan; Douglas P. Dickinson; Kenneth W. Gross

The Ren-1 locus of mice encodes the protease renin, which with converting enzyme processes angiotensinogen to the potent vasopressor angiotensin II. Some strains of mice appear to carry a duplication of the renin structural gene (Ren-2) near the Ren-1 locus. Strains with the gene duplication can exhibit as much as 100-fold higher levels of submaxillary gland renin compared to strains with a single gene copy. In contrast, kidney renin levels appear to be unaffected by the gene duplication. Sequence analysis of a 319 bp renin cDNA recombinant isolated from a kidney library from the two-gene strain DBA/2Ha corresponds to a transcript of the Ren-1 gene. Moreover, a single base substitution of A for G at residue #996 in the kidney renin mRNA creates a potential glycosylation recognition site that may, in part, account for the differential glycosylation of kidney and submaxillary gland renins. In addition, our tissue surveys indicate that mature mRNAs from the Ren loci are detectable in adrenal gland and testes, as well as sublingual and parotid salivary glands, and reveal length variation for the renin transcripts in at least the submaxillary gland.


Hypertension | 1991

Structure, expression, and regulation of the murine renin genes.

Curt D. Sigmund; Kenneth W. Gross

It has long been known that the renin-angiotensin system plays an integral role in the regulation of blood pressure and electrolyte and fluid balance in mammals. The advent of molecular biologic techniques has afforded new insights into the genes regulating blood pressure. Laboratory mice and rats have been used as experimental models to examine the structural organization and expression of the renin gene. It is now well established that some mice, unlike rats and humans, contain a duplicated copy of the renin locus, which accounts for the high level of renin activity long known to be found in the submandibular gland of some mice. Indeed it is this fortuitous observation that facilitated the isolation of the first complementary DNA clones for renin and ultimately the many species-specific probes now available to analyze mammalian tissues for evidence of primary renin expression. The use of complementary DNAs as probes for primary renin expression helped confirm and further clarify earlier studies demonstrating the presence of renin activity in a number of extrarenal tissues. Although expression in some of these tissues is evolutionarily conserved, their significance has still been elusive. In this report we review the impact of molecular biology on our current understanding of renin gene structure and organization, tissue- and cell-specific expression and regulation, and the changes in renin expression throughout ontogeny. In addition, we describe how new developments in gene transfer technology have added important tools to our arsenal for examining renin gene regulation and how these technologies can be used to develop new tools for renin and hypertension research. (Hypertension 1991;18:446-457)


Hypertension | 2005

Transcriptional Regulation of Renin An Update

Li Pan; Kenneth W. Gross

Renin, as a component of the renin-angiotensin system, plays important roles in the regulation of blood pressure, electrolyte homeostasis, and mammalian renal development. Transcription of renin genes is subject to complex developmental and tissue-specific regulation. Progress has been made recently in elucidating the molecular mechanisms involved in renin gene expression. Using mouse As4.1 cells, which have many features characteristic of the renin-expressing juxtaglomerular cells of kidney, a proximal promoter region (-197 to -50 bp) and an enhancer (-2866 to -2625 bp) have been identified in the mouse renin gene, Ren-1(c), that are critical for its expression. The proximal promoter region contains at least 7 transcription factor-binding sites, including a binding site for the products of Hox, developmental control genes. The enhancer consists of at least 11 transcription factor-binding sites and is responsive to various signal transduction pathways, including cAMP, retinoic acid, endothelin-1, and cytokines, to alter renin mRNA levels. Sequence highly homologous to the mouse enhancer is also found in the human and rat renin genes. How these regulatory regions function in vivo will be the focus of future study.


Molecular and Cellular Biology | 1999

Disordered T-Cell Development and T-Cell Malignancies in SCL LMO1 Double-Transgenic Mice: Parallels with E2A-Deficient Mice

David S. Chervinsky; Xian-Feng Zhao; Du H. Lam; MaryKay Ellsworth; Kenneth W. Gross; Peter D. Aplan

ABSTRACT The gene most commonly activated by chromosomal rearrangements in patients with T-cell acute lymphoblastic leukemia (T-ALL) is SCL/tal. In collaboration with LMO1 or LMO2, the thymic expression of SCL/tal leads to T-ALL at a young age with a high degree of penetrance in transgenic mice. We now show that SCL LMO1 double-transgenic mice display thymocyte developmental abnormalities in terms of proliferation, apoptosis, clonality, and immunophenotype prior to the onset of a frank malignancy. At 4 weeks of age, thymocytes from SCL LMO1 mice show 70% fewer total thymocytes, with increased rates of both proliferation and apoptosis, than control thymocytes. At this age, a clonal population of thymocytes begins to populate the thymus, as evidenced by oligoclonal T-cell-receptor gene rearrangements. Also, there is a dramatic increase in immature CD44+CD25− cells, a decrease in the more mature CD4+ CD8+ cells, and development of an abnormal CD44+ CD8+ population. An identical pattern of premalignant changes is seen with either a full-length SCL protein or an amino-terminal truncated protein which lacks the SCL transactivation domain, demonstrating that the amino-terminal portion of SCL is not important for leukemogenesis. Lastly, we show that the T-ALL which develop in the SCL LMO1 mice are strikingly similar to those which develop in E2A null mice, supporting the hypothesis that SCL exerts its oncogenic action through a functional inactivation of E proteins.


Proceedings of the National Academy of Sciences of the United States of America | 2010

HOXB9, a gene overexpressed in breast cancer, promotes tumorigenicity and lung metastasis

Tetsu Hayashida; Fumiyuki Takahashi; Naokazu Chiba; Elena F. Brachtel; Motomi Takahashi; Nadia Godin-Heymann; Kenneth W. Gross; Maria d. M. Vivanco; Vasuki Wijendran; Toshihiro Shioda; Dennis C. Sgroi; Patricia K. Donahoe; Shyamala Maheswaran

The mechanisms underlying tumoral secretion of signaling molecules into the microenvironment, which modulates tumor cell fate, angiogenesis, invasion, and metastasis, are not well understood. Aberrant expression of transcription factors, which has been implicated in the tumorigenesis of several types of cancers, may provide a mechanism that induces the expression of growth and angiogenic factors in tumors, leading to their local increase in the tumor microenvironment, favoring tumor progression. In this report, we demonstrate that the transcription factor HOXB9 is overexpressed in breast carcinoma, where elevated expression correlates with high tumor grade. HOXB9 induces the expression of several angiogenic factors (VEGF, bFGF, IL-8, and ANGPTL-2), as well as ErbB (amphiregulin, epiregulin, and neuregulins) and TGF-ß, which activate their respective pathways, leading to increased cell motility and acquisition of mesenchymal phenotypes. In vivo, HOXB9 promotes the formation of large, well-vascularized tumors that metastasize to the lung. Thus, deregulated expression of HOXB9 contributes to breast cancer progression and lung metastasis by inducing several growth factors that alter tumor-specific cell fates and the tumor stromal microenvironment.


The EMBO Journal | 1989

T antigen expression and tumorigenesis in transgenic mice containing a mouse major urinary protein/SV40 T antigen hybrid gene.

W A Held; J J Mullins; N J Kuhn; J F Gallagher; G D Gu; Kenneth W. Gross

A hybrid mouse major urinary protein (MUP)/SV40 T antigen gene was microinjected into fertilized mouse embryos and the resulting transgenic mice analyzed for the regulated expression of the transgene. Available evidence indicates that the MUP gene used for the hybrid gene construct is expressed in both male and female liver and possibly mammary gland. Three different transgenic lines exhibited a consistent pattern of tissue specific expression of the transgene. As a consequence of transgene expression and T antigen synthesis in the liver, both male and female transgenic animals developed liver hyperplasia and tumors. Transgene expression and liver hyperplasia commenced at approximately 2‐4 weeks of age, the same time that MUP gene expression is first detected in the liver. The expression of the transgene resulted in an immediate strong suppression of liver MUP mRNA levels but had relatively little effect on other liver specific mRNAs. From 4 to 8 weeks, the liver increased several fold in size, relative to non‐transgenic littermates. Definitive tumor nodules were not apparent until 8‐10 weeks. The transgene was also consistently found to be expressed in the skin sebaceous glands and the preputial gland, a modified sebaceous gland. The expression of the transgene in the skin sebaceous glands is consistent with the presence of MUP mRNA in the skin and a putative role for MUPs in the transport and excretion of small molecules. Occasional expression of the transgene in other tissues (kidney and mammary connective tissues) was also noted.(ABSTRACT TRUNCATED AT 250 WORDS)


Hypertension | 2004

Adjacent Expression of Renin and Angiotensinogen in the Rostral Ventrolateral Medulla Using a Dual-Reporter Transgenic Model

Julie L. Lavoie; Martin D. Cassell; Kenneth W. Gross; Curt D. Sigmund

Abstract—All components of the renin-angiotensin system are localized in the brain. However, because renin is present in very low concentrations, the mechanism by which angiotensin II is formed in the brain remains unclear. We previously reported the development of 2 transgenic mouse models using sensitive reporters, enhanced green fluorescent protein (eGFP) and β-galactosidase (β-Gal), to examine the cellular localization of renin and angiotensinogen in the mouse brain. To determine whether renin and angiotensinogen are coexpressed or present in neighboring cells in the rostral ventrolateral medulla (RVLM) and other cardiovascular control regions of the brain, we produced and examined double-transgenic mice, which express eGFP driven by the renin promoter (REN-1c/eGFP) and β-gal driven by the human angiotensinogen promoter (hAGT/β-gal). Using these reporter transgenes as sensitive markers for renin and angiotensinogen expression, we conclude that both proteins are coexpressed in the parabrachial nucleus and central nucleus of the amygdala and are in adjacent cells in the RVLM, reticular formation, bed nucleus of the stria terminalis, subfornical organ, and CA1–3 region. These data suggests that, in these areas, both renin and angiotensinogen are in close proximity providing the potential for the local formation of angiotensin I either intracellularly, when there is colocalization, or in the interstitium, when they are in juxtaposed cells.


Circulation Research | 1999

Species-Specific Differences in Positive and Negative Regulatory Elements in the Renin Gene Enhancer

Qi Shi; Thomas A. Black; Kenneth W. Gross; Curt D. Sigmund

A distal transcriptional enhancer has been previously reported upstream of the mouse renin gene. A homologous sequence is also present upstream of the human renin gene, but the mouse and human renin enhancers differ markedly in their ability to activate transcription of a renin promoter. Although the 2 enhancers share high homology in their 202-bp promoter distal portions, their 40-bp proximal portions are heterogeneous. Chimeric enhancers were used to test the role of the 40-bp segment (m40) of the enhancer by using transient transfection analysis in mouse kidney renin-expressing As4. 1 cells. Deletion of m40 from the mouse renin enhancer or its addition to the human renin enhancer did not significantly change transcriptional activity when placed close to a mouse or human renin promoter. However, when placed further upstream of a renin promoter, the same deletion and substitution markedly altered enhancer activity. Electrophoretic gel mobility shift analysis identified 2 elements, a and b, in m40 that specifically bound nuclear proteins from As4.1 cells. Mutagenesis and transient transfection analysis revealed that element b accounts for the function of m40 and that element a antagonizes the positive influence of element b. Gel competition and supershift analysis revealed that nuclear factor-Y, a ubiquitous CAAT-box binding protein, binds to element a. Sequence analysis revealed that the human renin enhancer has a natural loss-of-function mutation in element b that affects its ability to transactivate when placed far upstream of a promoter. Reversion of the human renin element b to match the mouse sequence restored transactivation of the enhancer in mouse As4.1 cells. These data suggest that element b cooperates with the rest of the enhancer to maintain full enhancer activity, whereas element a may regulate enhancer activity. Sequence differences in these elements may explain the functional differences in the mouse and human renin enhancer sequences.


Physiological Genomics | 2011

Transcriptional regulator RBP-J regulates the number and plasticity of renin cells

Ruth M. Castellanos Rivera; Maria C. Monteagudo; Ellen S. Pentz; Sean T. Glenn; Kenneth W. Gross; Oscar A. Carretero; Maria Luisa S. Sequeira-Lopez; R. Ariel Gomez

Renin-expressing cells are crucial in the control of blood pressure and fluid-electrolyte homeostasis. Notch receptors convey cell-cell signals that may regulate the renin cell phenotype. Because the common downstream effector for all Notch receptors is the transcription factor RBP-J, we used a conditional knockout approach to delete RBP-J in cells of the renin lineage. The resultant RBP-J conditional knockout (cKO) mice displayed a severe reduction in the number of renin-positive juxtaglomerular apparatuses (JGA) and a reduction in the total number of renin positive cells per JGA and along the afferent arterioles. This reduction in renin protein was accompanied by a decrease in renin mRNA expression, decreased circulating renin, and low blood pressure. To investigate whether deletion of RBP-J altered the ability of mice to increase the number of renin cells normally elicited by a physiological threat, we treated RBP-J cKO mice with captopril and sodium depletion for 10 days. The resultant treated RBP-J cKO mice had a 65% reduction in renin mRNA levels (compared with treated controls) and were unable to increase circulating renin. Although these mice attempted to increase the number of renin cells, the cells were unusually thin and had few granules and barely detectable amounts of immunoreactive renin. As a consequence, the cells were incapable of fully adopting the endocrine phenotype of a renin cell. We conclude that RBP-J is required to maintain basal renin expression and the ability of smooth muscle cells along the kidney vasculature to regain the renin phenotype, a fundamental mechanism to preserve homeostasis.

Collaboration


Dive into the Kenneth W. Gross's collaboration.

Top Co-Authors

Avatar

Craig A. Jones

Roswell Park Cancer Institute

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Sean T. Glenn

Roswell Park Cancer Institute

View shared research outputs
Top Co-Authors

Avatar

Li Pan

Brigham and Women's Hospital

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Thomas A. Black

Roswell Park Cancer Institute

View shared research outputs
Top Co-Authors

Avatar

Diana G. Eng

University of Washington

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Colleen M. Kane

Roswell Park Cancer Institute

View shared research outputs
Researchain Logo
Decentralizing Knowledge