Kenneth W. Henderson
University of Notre Dame
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Kenneth W. Henderson.
Nature | 2014
Natalie A. Wasio; Rebecca C. Quardokus; Ryan P. Forrest; Craig S. Lent; Steven A. Corcelli; John A. Christie; Kenneth W. Henderson; S. Alex Kandel
The process of molecular self-assembly on solid surfaces is essentially one of crystallization in two dimensions, and the structures that result depend on the interplay between intermolecular forces and the interaction between adsorbates and the underlying substrate. Because a single hydrogen bond typically has an energy between 15 and 35 kilojoules per mole, hydrogen bonding can be a strong driver of molecular assembly; this is apparent from the dominant role of hydrogen bonding in nucleic-acid base pairing, as well as in the secondary structure of proteins. Carboxylic acid functional groups, which provide two hydrogen bonds, are particularly promising and reliable in creating and maintaining surface order, and self-assembled monolayers of benzoic acids produce structure that depends on the number and relative placement of carboxylic acid groups. Here we use scanning tunnelling microscopy to study self-assembled monolayers of ferrocenecarboxylic acid (FcCOOH), and find that, rather than producing dimeric or linear structures typical of carboxylic acids, FcCOOH forms highly unusual cyclic hydrogen-bonded pentamers, which combine with simultaneously formed FcCOOH dimers to form two-dimensional quasicrystallites that exhibit local five-fold symmetry and maintain translational and rotational order (without periodicity) for distances of more than 400 ångströms.
Chemistry: A European Journal | 2001
Kenneth W. Henderson; William J. Kerr
As part of the continued requirement for more selective reagents in organic synthesis, magnesium bisamides are becoming established as a class of organometallic bases with considerable potential. Their relatively mild reactivity, combined with their high degree of steric congestion, leads to a distinct class of reagents with significantly different chemo-, regio-, stereo- and enantioselectivities when compared with existing species and protocols.
Tetrahedron | 2002
Kenneth W. Henderson; William Kerr; Jennifer H. Moir
A novel homochiral magnesium bisamide has been readily prepared and, following careful optimisation, this species has been shown to react efficiently with a series of prochiral 4-substituted cyclohexanones in the presence of TMSCl to give the corresponding silyl enol ethers in enantiomeric ratios of up to 95:5. Additionally, the same chiral base system has been shown to be highly effective in the desymmetrisation of cis-2,6-disubstituted cyclohexanones, providing excellent levels of both conversion and enantioselection (up to >99.5:0.5 er). Furthermore, the magnesium bisamide has also been shown to mediate a kinetic resolution process with the corresponding trans-disubstituted substrates, allowing access to enantioenriched enol ethers and ketones.
Chemistry: A European Journal | 2008
Katherine L. Hull; Ian Carmichael; Bruce C. Noll; Kenneth W. Henderson
The geminal organodimetallic complexes [({Ph2P(NSiMe3)}2C)2M4], where M4=Na4, 3; Li2Na2, 4; LiNa3, 5; Li2K2, 6; Na2K2, 7, and Na3K, 8, have been prepared through a variety of methods including direct or sequential deprotonation of the neutral ligand with strong bases (tBuLi, nBuNa, (Me3Si)2NNa, PhCH2K or (Me3Si)2NK), transmetalation of the homometallic derivatives (M4=Li4, 2 or Na4, 3) with tBuONa or tBuOK, and by cation exchange upon mixing the homometallic complexes in an arene solution. Complexes 3-8 have been characterized by single-crystal X-ray diffraction and are found to form a homologous series of dimeric structures in the solid-state, in accord with the previously reported structure of 2. Each complex is composed of a plane of four metals, M4, in which the ligands adopt capping positions to form distorted M4C2 octahedral cores. The metals in homometallic complexes 2 and 3 define an approximate square, whereas the heterometallic derivatives 4-8 have distinctly rhombic arrangements. The lighter metals in 4-8 interact strongly with the carbanions and the heavier metals are pushed towards the periphery of the structures. 1H, 13C, 7Li, 31P, and 29Si multinuclear NMR spectroscopic studies, cryoscopic measurements, and electrospray ionization-mass spectroscopic studies are consistent with the dimers being retained in solution. Dynamic solution behavior was discovered for Li2Na2 complex 4, in which all five possible tetrametallic derivatives Li4, Li3Na, Li2Na2, LiNa3 and Na4 coexist. Density functional theory (DFT) and natural bond order (NBO) calculations in association with natural population analyses (NPA) reveal significant differences in the electronic structures of the variously metalated dianions. The smaller cations are more effective in localizing the double negative charge on the carbanion (in the form of two lone pairs), leading to differences in the distribution of the electron density within the ligand backbones. In turn, a complex interplay of hyperconjugation, electrostatics and metal-ligand interactions is found to control the resulting electronic structures of the geminal organodimetallic complexes.
Journal of Organometallic Chemistry | 1992
Kenneth W. Henderson; Robert E. Mulvey; William Clegg; Paul A. O'Neil
Chelating alkali metal amides derived from metallation of the secondary amines PhCH2(Me2NCH2CH2)NH and Ph(2-Pyr)NH, react with the Grignard reagent (n)BuMgCl in 1:1 molar ratios to afford mono(amido) [PhCH2(Me2NCH2CH2)NMgnBu]2 1 and bis(amido) {[Ph(2-Pyr)N]2Mg.(THF)2} 2 (where THF = tetrahydrofuran) respectively. X-Ray crystallography shows 1 to be dimeric having an (amido N-Mg)2 ring, the central one of a fused tricyclic core, with the other two arising from internal complexation by the tertiary amine nitrogen atoms. Butyl ligands complete the pseudo-tetrahedral coordination of the magnesium atoms. Variable temperature H-1 NMR spectroscopic studies indicate that this structure retains its compact, highly rigid nature in arene solution, rendering it resistant to external complexation by THF. In contrast, the crystal structure of 2 is monomeric, with a pseudo-octahedral magnesium centre coordinated by two bidentate Ph(2-Pyr)N- anions and two THF molecules. Bis(amido) 2 appears to result from the THF-induced disproportionation of alkyl(amido) [Ph(2-Pyr)NMgnBu]2, a dimer akin to 1, but decidedly more flexible sterically and therefore susceptible to attack by external donor molecules.
Journal of Organometallic Chemistry | 1995
David R. Armstrong; Kenneth W. Henderson; Murray MacGregor; Robert E. Mulvey; Michael J. Ross; William Clegg; Paul A. O'Neil
Benzonitrile can be readily cyclotrimerised by treatment with a suitable alkyllithium to give a simple triazine, or to a solvated lithiodihydrotriazine derivative. Which cyclic product dominates depends mainly on the source of the active Li+ cation (n-butyllithium, t-butyllithium and tetramethylguanidinolithium are considered here), and on the solvent employed. X-ray crystallographic studies on a representative compound show that the lithio species exists as a mononuclear, contact ion pair structure, with the triazine ring in a 1,4-dihydro state. On reaction with the Grignard reagent, MeMgCl, this compound gives a methylmagnesiodihydrotriazine, which has also been crystallographically characterised and found to closely resemble its lithio precursor. Ab initio MO calculations on model systems reveal that the 1,4-dihydrotriazine arrangement is energetically preferred to the 1,2-dihydro alternative irrespective of the counterion (Li+ or H+) present. A theoretical investigation of the methanolysis of the lithio species indicates that the formation of an intermediate MeOH complex, with the alcohol attached to a ring N atom and not to Li+, directs the reaction towards ultimate formation of a 1,2-dihydrotriazine.
Chemical Communications | 2007
J. Jacob Morris; Bruce C. Noll; Kenneth W. Henderson
Ring and cage aggregates containing the large alkali metals potassium or rubidium have proven to be excellent building blocks for the creation of high-connectivity nets, as demonstrated by their use as septahedral and nonahedral nodes in synthesis of two new types of 7-connected nets and the first ever example of a 9-connected net.
Journal of The Chemical Society, Chemical Communications | 1994
William Clegg; Kenneth W. Henderson; Robert E. Mulvey; Pau. A. O'Neil
Factors governing the intermetallic ratios and coordination geometries in lithium amidomagnesiates are discussed with reference to three model crystal structures containing the same (dibenzylamido) ligand, which remarkably reveal that an unsolvated lithium can induce coordination expansion about a magnesium centre.
Inorganic Chemistry | 2008
J. Jacob Morris; Bruce C. Noll; Kenneth W. Henderson
A series of complex networks have been synthesized from the association of potassium and rubidium p-halide-substituted aryloxides using 1,4-dioxane molecules as neutral linkers. The crystalline polymers [(4-F-C6H4OK)6 x (dioxane)4]infinity (1), [(4-I-C6H4OK)6 x (dioxane)6]infinity (2), and [(4-I-C6H4ORb)6 x (dioxane)6]infinity (3) are built from discreet, hexameric M6O6 aggregates. Compound 1 forms an unusual 16-connected framework involving both K-F and K-O(diox) interactions. Each hexamer connects to eight neighboring aggregates through double-bridging contacts, resulting in a body-centered cubic (bcu) topology. Compounds 2 and 3 are isostructural, 12-connected networks, where each aggregate utilizes six dioxane double bridges to form primitive cubic (pcu) nets. In contrast, the complexes [(4-Cl-C6H4OK)3 x (dioxane)]infinity (4), [(4-Br-C6H4OK)2 x (dioxane)0.5]infinity (5), and [(4-Br-C6H4ORb)5 x (dioxane)5]infinity (6) are built from one-dimensional (1D) inorganic rods composed solely of M-O(Ar) interactions. The extended structures of both 4 and 5 can be described as pcu nets, where parallel 1D inorganic pillars are connected through dioxane bridges. Compound 6 is also composed of parallel 1D inorganic rods, but in this instance the coordinated dioxane molecules do not bridge, resulting in isolated, close-packed chains in the solid state.
Tetrahedron Letters | 2001
John D Anderson; Pilar Garcı́a Garcı́a; Douglas Hayes; Kenneth W. Henderson; William J. Kerr; Jennifer H. Moir; Kamalesh Pai Fondekar
Abstract A series of novel, optically pure, Mg-bisamides have been prepared and, in turn, used to mediate enantioselective deprotonations of conformationally locked ketones. The new bases exhibit a wide range of selectivities, from poor to excellent (up to 95:5 e.r.); trends between amine structure and the subsequent selectivity of the deprotonation system are detailed. In addition, the effects on the selectivity and the reactivity of the deprotonation process on replacing the Lewis base additive HMPA for DMPU have been investigated and found to be related to the reaction temperature.