Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Kenneth W. Witwer is active.

Publication


Featured researches published by Kenneth W. Witwer.


Journal of extracellular vesicles | 2013

Standardization of sample collection, isolation and analysis methods in extracellular vesicle research

Kenneth W. Witwer; Edit I. Buzás; Lynne T. Bemis; Adriana Bora; Cecilia Lässer; Jan Lötvall; Esther Nolte-‘t Hoen; Melissa G. Piper; Sarada Sivaraman; Johan Skog; Clotilde Théry; Marca H. M. Wauben; Fred H. Hochberg

The emergence of publications on extracellular RNA (exRNA) and extracellular vesicles (EV) has highlighted the potential of these molecules and vehicles as biomarkers of disease and therapeutic targets. These findings have created a paradigm shift, most prominently in the field of oncology, prompting expanded interest in the field and dedication of funds for EV research. At the same time, understanding of EV subtypes, biogenesis, cargo and mechanisms of shuttling remains incomplete. The techniques that can be harnessed to address the many gaps in our current knowledge were the subject of a special workshop of the International Society for Extracellular Vesicles (ISEV) in New York City in October 2012. As part of the “ISEV Research Seminar: Analysis and Function of RNA in Extracellular Vesicles (evRNA)”, 6 round-table discussions were held to provide an evidence-based framework for isolation and analysis of EV, purification and analysis of associated RNA molecules, and molecular engineering of EV for therapeutic intervention. This article arises from the discussion of EV isolation and analysis at that meeting. The conclusions of the round table are supplemented with a review of published materials and our experience. Controversies and outstanding questions are identified that may inform future research and funding priorities. While we emphasize the need for standardization of specimen handling, appropriate normative controls, and isolation and analysis techniques to facilitate comparison of results, we also recognize that continual development and evaluation of techniques will be necessary as new knowledge is amassed. On many points, consensus has not yet been achieved and must be built through the reporting of well-controlled experiments.


Journal of extracellular vesicles | 2014

Minimal experimental requirements for definition of extracellular vesicles and their functions: a position statement from the International Society for Extracellular Vesicles

Jan Lötvall; Andrew F. Hill; Fred H. Hochberg; Edit I. Buzás; Dolores Di Vizio; Chris Gardiner; Yong Song Gho; Igor V. Kurochkin; Suresh Mathivanan; Peter J. Quesenberry; Susmita Sahoo; Hidetoshi Tahara; Marca H. M. Wauben; Kenneth W. Witwer; Clotilde Théry

Secreted membrane-enclosed vesicles, collectively called extracellular vesicles (EVs), which include exosomes, ectosomes, microvesicles, microparticles, apoptotic bodies and other EV subsets, encompass a very rapidly growing scientific field in biology and medicine. Importantly, it is currently technically challenging to obtain a totally pure EV fraction free from non-vesicular components for functional studies, and therefore there is a need to establish guidelines for analyses of these vesicles and reporting of scientific studies on EV biology. Here, the International Society for Extracellular Vesicles (ISEV) provides researchers with a minimal set of biochemical, biophysical and functional standards that should be used to attribute any specific biological cargo or functions to EVs.


Clinical Chemistry | 2015

Circulating MicroRNA Biomarker Studies: Pitfalls and Potential Solutions

Kenneth W. Witwer

BACKGROUND Circulating microRNAs have been proposed as disease biomarkers that may aid in risk assessment, diagnosis, prognosis, and monitoring of treatment response. The perceived opportunity has loomed particularly large in neoplastic disease, where alterations in cancer cells are thought to be reflected in the extracellular space as affected cells release upregulated miRNAs or fail to release apparently downregulated species. Despite the promise of miRNA biomarkers, evaluation of the diagnostic specificity and reproducibility of reported markers suggests that realizing this promise remains a work in progress. CONTENTS This review examines issues of diagnostic specificity and reproducibility that have afflicted circulating miRNA studies. Surveying the breast cancer literature as an example, few miRNAs are reported consistently. Furthermore, it is posited that the assumptions underlying models of direct contributions of diseased tissue to biofluid miRNA profiles may not hold. Suggestions for improving diagnostic specificity and reliability are provided. SUMMARY To maximize the likelihood of return on investment as miRNAs continue to be evaluated as specific and clinically useful markers, a focus is needed on miRNAs found in specific carriers, such as extracellular vesicles. Alternative sampling techniques should be developed, and nonblood biofluids should be considered. Careful optimization and standardization of preanalytical and analytical methods is needed to ensure that future results, positive or negative, are reliable.


Journal of Immunology | 2010

MicroRNA Regulation of IFN-β Protein Expression: Rapid and Sensitive Modulation of the Innate Immune Response

Kenneth W. Witwer; Jeanne M. Sisk; Lucio Gama; Janice E. Clements

IFN-β production is an inaugural event in the innate immune response to viral infections, with relatively small fold changes in IFN-β expression resulting in the activation of important antiviral signaling cascades. In our rapid SIV/macaque model of HIV encephalitis, the virus enters the CNS within 4 d of infection, accompanied by a marked IFN-β response that wanes as SIV replication is controlled. The centrality of IFN-β to the innate antiviral response in the CNS combines with the potential inflammatory damage associated with long-term activation of this pathway to suggest that IFN-β may be subject to regulatory fine-tuning in addition to well-established transcriptional and message stability mechanisms of regulation. In this paper, we present for the first time evidence that microRNAs (miRNAs), including miR-26a, -34a, -145, and let-7b, may directly regulate IFN-β in human and macaque cells. In primary primate macrophages, the main cell type implicated in HIV and SIV infection in the CNS, specific miRNAs reduce, whereas miRNA inhibitors enhance, IFN-β protein production. The potential biologic significance of this regulation is supported by evidence of an apparent negative feedback loop, with increased expression of three IFN-β–regulating miRNAs by primate macrophages exposed to recombinant IFN-β or stimulated to produce IFN-β. Thus, miRNAs may contribute significantly to the regulation of IFN-β in innate immune responses.


Bioinformatics | 2015

EVpedia: a community web portal for extracellular vesicles research

Dae-Kyum Kim; Jaewook Lee; Sae Rom Kim; Dong Sic Choi; Yae Jin Yoon; Ji Hyun Kim; Gyeongyun Go; Dinh Nhung; Kahye Hong; Su Chul Jang; Si-Hyun Kim; Kyong-Su Park; Oh Youn Kim; Hyun Taek Park; Jihye Seo; Elena Aikawa; Monika Baj-Krzyworzeka; Bas W. M. van Balkom; Mattias Belting; Lionel Blanc; Vincent C. Bond; Antonella Bongiovanni; Francesc E. Borràs; Luc Buée; Edit I. Buzás; Lesley Cheng; Aled Clayton; Emanuele Cocucci; Charles S. Dela Cruz; Dominic M. Desiderio

MOTIVATION Extracellular vesicles (EVs) are spherical bilayered proteolipids, harboring various bioactive molecules. Due to the complexity of the vesicular nomenclatures and components, online searches for EV-related publications and vesicular components are currently challenging. RESULTS We present an improved version of EVpedia, a public database for EVs research. This community web portal contains a database of publications and vesicular components, identification of orthologous vesicular components, bioinformatic tools and a personalized function. EVpedia includes 6879 publications, 172 080 vesicular components from 263 high-throughput datasets, and has been accessed more than 65 000 times from more than 750 cities. In addition, about 350 members from 73 international research groups have participated in developing EVpedia. This free web-based database might serve as a useful resource to stimulate the emerging field of EV research. AVAILABILITY AND IMPLEMENTATION The web site was implemented in PHP, Java, MySQL and Apache, and is freely available at http://evpedia.info.


RNA Biology | 2013

Real-time quantitative PCR and droplet digital PCR for plant miRNAs in mammalian blood provide little evidence for general uptake of dietary miRNAs: Limited evidence for general uptake of dietary plant xenomiRs

Kenneth W. Witwer; Melissa A. McAlexander; Suzanne E. Queen; Robert J. Adams

Evidence that exogenous dietary miRNAs enter the bloodstream and tissues of ingesting animals has been accompanied by an indication that at least one plant miRNA, miR168, participates in “cross-kingdom” regulation of a mammalian transcript. If confirmed, these findings would support investigation of miRNA-based dietary interventions in disease. Here, blood was obtained pre- and post-prandially (1, 4, 12 h) from pigtailed macaques that received a miRNA-rich plant-based substance. Plant and endogenous miRNAs were measured by RT-qPCR. Although low-level amplification was observed for some plant miRNA assays, amplification was variable and possibly non-specific, as suggested by droplet digital PCR. A consistent response to dietary intake was not observed. While our results do not support general and consistent uptake of dietary plant miRNAs, additional studies are needed to establish whether or not plant or animal xenomiRs are transferred across the gut in sufficient quantity to regulate endogenous genes.


Retrovirology | 2012

Relationships of PBMC microRNA expression, plasma viral load, and CD4+ T-cell count in HIV-1-infected elite suppressors and viremic patients

Kenneth W. Witwer; Andria K. Watson; Joel N. Blankson; Janice E. Clements

BackgroundHIV-1-infected elite controllers or suppressors (ES) maintain undetectable viral loads (< 50 copies/mL) without antiretroviral therapy. The mechanisms of suppression are incompletely understood. Modulation of HIV-1 replication by miRNAs has been reported, but the role of small RNAs in ES is unknown. Using samples from a well-characterized ES cohort, untreated viremic patients, and uninfected controls, we explored the PBMC miRNA profile and probed the relationships of miRNA expression, CD4+ T-cell counts, and viral load.ResultsmiRNA profiles, obtained using multiple acquisition, data processing, and analysis methods, distinguished ES and uninfected controls from viremic HIV-1-infected patients. For several miRNAs, however, ES and viremic patients shared similar expression patterns. Differentially expressed miRNAs included those with reported roles in HIV-1 latency (miR-29 family members, miRs -125b and -150). Others, such as miR-31 and miR-31*, had no previously reported connection with HIV-1 infection but were found here to differ significantly with uncontrolled HIV-1 replication. Correlations of miRNA expression with CD4+ T-cell count and viral load were found, and we observed that ES with low CD4+ T-cell counts had miRNA profiles more closely related to viremic patients than controls. However, expression patterns indicate that miRNA variability cannot be explained solely by CD4+ T-cell variation.ConclusionsThe intimate involvement of miRNAs in disease processes is underscored by connections of miRNA expression with the HIV disease clinical parameters of CD4 count and plasma viral load. However, miRNA profile changes are not explained completely by these variables. Significant declines of miRs-125b and -150, among others, in both ES and viremic patients indicate the persistence of host miRNA responses or ongoing effects of infection despite viral suppression by ES. We found no negative correlations with viral load in viremic patients, not even those that have been reported to silence HIV-1 in vitro, suggesting that the effects of these miRNAs are exerted in a focused, cell-type-specific manner. Finally, the observation that some ES with low CD4 counts were consistently related to viremic patients suggests that miRNAs may serve as biomarkers for risk of disease progression even in the presence of viral suppression.


Nature Methods | 2017

EV-TRACK: transparent reporting and centralizing knowledge in extracellular vesicle research

Jan Van Deun; Pieter Mestdagh; Patrizia Agostinis; Özden Akay; Sushma Anand; Jasper Anckaert; Zoraida Andreu Martinez; Tine Baetens; Els Beghein; Laurence Bertier; Geert Berx; Janneke Boere; Stephanie Boukouris; Michel Bremer; Dominik Buschmann; James Brian Byrd; Clara Casert; Lesley Cheng; Anna Cmoch; Delphine Daveloose; Eva De Smedt; Seyma Demirsoy; Victoria Depoorter; Bert Dhondt; Tom A. P. Driedonks; Aleksandra M. Dudek; Abdou ElSharawy; Ilaria Floris; Andrew D. Foers; Kathrin Gärtner

We argue that the field of extracellular vesicle (EV) biology needs more transparent reporting to facilitate interpretation and replication of experiments. To achieve this, we describe EV-TRACK, a crowdsourcing knowledgebase (http://evtrack.org) that centralizes EV biology and methodology with the goal of stimulating authors, reviewers, editors and funders to put experimental guidelines into practice.


Journal of extracellular vesicles | 2016

Techniques used for the isolation and characterization of extracellular vesicles: results of a worldwide survey

Chris Gardiner; Dolores Di Vizio; Susmita Sahoo; Clotilde Théry; Kenneth W. Witwer; Marca H. M. Wauben; Andrew F. Hill

Extracellular vesicles (EVs) represent an important mode of intercellular communication. Research in this field has grown rapidly in the last few years, and there is a plethora of techniques for the isolation and characterization of EVs, many of which are poorly standardized. EVs are heterogeneous in size, origin and molecular constituents, with considerable overlap in size and phenotype between different populations of EVs. Little is known about current practices for the isolation, purification and characterization of EVs. We report here the first large, detailed survey of current worldwide practices for the isolation and characterization of EVs. Conditioned cell culture media was the most widely used material (83%). Ultracentrifugation remains the most commonly used isolation method (81%) with 59% of respondents use a combination of methods. Only 9% of respondents used only 1 characterization method, with others using 2 or more methods. Sample volume, sample type and downstream application all influenced the isolation and characterization techniques employed.


Journal of extracellular vesicles | 2017

Obstacles and opportunities in the functional analysis of extracellular vesicle RNA – an ISEV position paper

Bogdan Mateescu; Emma J. K. Kowal; Bas W. M. van Balkom; Sabine Bartel; Suvendra N. Bhattacharyya; Edit I. Buzás; Amy H. Buck; Paola de Candia; Franklin Wang-Ngai Chow; Saumya Das; Tom A. P. Driedonks; Lola Fernández-Messina; Franziska Haderk; Andrew F. Hill; J Jones; Kendall Van Keuren-Jensen; Charles P. Lai; Cecilia Lässer; Italia Di Liegro; Taral R. Lunavat; Magdalena J. Lorenowicz; Sybren L. N. Maas; Imre Mäger; María Mittelbrunn; Stefan Momma; Kamalika Mukherjee; Muhammad Nawaz; D. Michiel Pegtel; Michael W. Pfaffl; Raymond M. Schiffelers

ABSTRACT The release of RNA-containing extracellular vesicles (EV) into the extracellular milieu has been demonstrated in a multitude of different in vitro cell systems and in a variety of body fluids. RNA-containing EV are in the limelight for their capacity to communicate genetically encoded messages to other cells, their suitability as candidate biomarkers for diseases, and their use as therapeutic agents. Although EV-RNA has attracted enormous interest from basic researchers, clinicians, and industry, we currently have limited knowledge on which mechanisms drive and regulate RNA incorporation into EV and on how RNA-encoded messages affect signalling processes in EV-targeted cells. Moreover, EV-RNA research faces various technical challenges, such as standardisation of EV isolation methods, optimisation of methodologies to isolate and characterise minute quantities of RNA found in EV, and development of approaches to demonstrate functional transfer of EV-RNA in vivo. These topics were discussed at the 2015 EV-RNA workshop of the International Society for Extracellular Vesicles. This position paper was written by the participants of the workshop not only to give an overview of the current state of knowledge in the field, but also to clarify that our incomplete knowledge – of the nature of EV(-RNA)s and of how to effectively and reliably study them – currently prohibits the implementation of gold standards in EV-RNA research. In addition, this paper creates awareness of possibilities and limitations of currently used strategies to investigate EV-RNA and calls for caution in interpretation of the obtained data.

Collaboration


Dive into the Kenneth W. Witwer's collaboration.

Top Co-Authors

Avatar

Melissa A. McAlexander

Johns Hopkins University School of Medicine

View shared research outputs
Top Co-Authors

Avatar

Janice E. Clements

Johns Hopkins University School of Medicine

View shared research outputs
Top Co-Authors

Avatar

Lucio Gama

Johns Hopkins University School of Medicine

View shared research outputs
Top Co-Authors

Avatar

M. Christine Zink

Johns Hopkins University School of Medicine

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Dillon C. Muth

Johns Hopkins University School of Medicine

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge