Kenneth Y. Kwan
Yale University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Kenneth Y. Kwan.
Nature | 2010
Kaya Bilguvar; Ali K. Ozturk; Angeliki Louvi; Kenneth Y. Kwan; Murim Choi; Burak Tatlı; Dilek Yalnizoglu; Beyhan Tüysüz; Ahmet Okay Caglayan; Sarenur Gokben; Hande Kaymakçalan; Tanyeri Barak; Mehmet Bakırcıoğlu; Katsuhito Yasuno; Winson S.C. Ho; Stephan J. Sanders; Ying Zhu; Sanem Yilmaz; Alp Dinçer; Michele H. Johnson; Richard A. Bronen; Naci Kocer; Hüseyin Per; Shrikant Mane; Mehmet Necmettin Pamir; Cengiz Yalcinkaya; Meral Topçu; Meral Özmen; Nenad Sestan; Richard P. Lifton
The development of the human cerebral cortex is an orchestrated process involving the generation of neural progenitors in the periventricular germinal zones, cell proliferation characterized by symmetric and asymmetric mitoses, followed by migration of post-mitotic neurons to their final destinations in six highly ordered, functionally specialized layers. An understanding of the molecular mechanisms guiding these intricate processes is in its infancy, substantially driven by the discovery of rare mutations that cause malformations of cortical development. Mapping of disease loci in putative Mendelian forms of malformations of cortical development has been hindered by marked locus heterogeneity, small kindred sizes and diagnostic classifications that may not reflect molecular pathogenesis. Here we demonstrate the use of whole-exome sequencing to overcome these obstacles by identifying recessive mutations in WD repeat domain 62 (WDR62) as the cause of a wide spectrum of severe cerebral cortical malformations including microcephaly, pachygyria with cortical thickening as well as hypoplasia of the corpus callosum. Some patients with mutations in WDR62 had evidence of additional abnormalities including lissencephaly, schizencephaly, polymicrogyria and, in one instance, cerebellar hypoplasia, all traits traditionally regarded as distinct entities. In mice and humans, WDR62 transcripts and protein are enriched in neural progenitors within the ventricular and subventricular zones. Expression of WDR62 in the neocortex is transient, spanning the period of embryonic neurogenesis. Unlike other known microcephaly genes, WDR62 does not apparently associate with centrosomes and is predominantly nuclear in localization. These findings unify previously disparate aspects of cerebral cortical development and highlight the use of whole-exome sequencing to identify disease loci in settings in which traditional methods have proved challenging.
Neuron | 2008
Olga V. Britanova; Camino De Juan Romero; Amanda Cheung; Kenneth Y. Kwan; Manuela Schwark; Andrea Gyorgy; Tanja Vogel; Sergey Akopov; Miso Mitkovski; Denes V. Agoston; Nenad Sestan; Zoltán Molnár; Victor Tarabykin
Pyramidal neurons of the neocortex can be subdivided into two major groups: deep- (DL) and upper-layer (UL) neurons. Here we report that the expression of the AT-rich DNA-binding protein Satb2 defines two subclasses of UL neurons: UL1 (Satb2 positive) and UL2 (Satb2 negative). In the absence of Satb2, UL1 neurons lose their identity and activate DL- and UL2-specific genetic programs. UL1 neurons in Satb2 mutants fail to migrate to superficial layers and do not contribute to the corpus callosum but to the corticospinal tract, which is normally populated by DL axons. Ctip2, a gene required for the formation of the corticospinal tract, is ectopically expressed in all UL1 neurons in the absence of Satb2. Satb2 protein interacts with the Ctip2 genomic region and controls chromatin remodeling at this locus. Satb2 therefore is required for the initiation of the UL1-specific genetic program and for the inactivation of DL- and UL2-specific genes.
Nature Neuroscience | 2007
Mladen-Roko Rasin; Valeswara Rao Gazula; Joshua J. Breunig; Kenneth Y. Kwan; Matthew B. Johnson; Susan Liu-Chen; Hua Shun Li; Lily Yeh Jan; Yuh Nung Jan; Pasko Rakic; Nenad Sestan
The polarity and adhesion of radial glial cells (RGCs), which function as progenitors and migrational guides for neurons, are critical for morphogenesis of the cerebral cortex. These characteristics largely depend on cadherin-based adherens junctions, which anchor apical end-feet of adjacent RGCs to each other at the ventricular surface. Here, we show that mouse numb and numb-like are required for maintaining radial glial adherens junctions. Numb accumulates in the apical end-feet, where it localizes to adherens junction–associated vesicles and interacts with cadherins. Numb and Numbl inactivation in RGCs decreases proper basolateral insertion of cadherins and disrupts adherens junctions and polarity, leading to progenitor dispersion and disorganized cortical lamination. Conversely, overexpression of Numb prolongs RGC polarization, in a cadherin-dependent manner, beyond the normal neurogenic period. Thus, by regulating RGC adhesion and polarity, Numb and Numbl are required for the tissue architecture of neurogenic niches and the cerebral cortex.
Proceedings of the National Academy of Sciences of the United States of America | 2008
Kenneth Y. Kwan; Mandy M. S. Lam; Željka Krsnik; Yuka Imamura Kawasawa; Véronique Lefebvre; Nenad Sestan
Neocortical projection neurons exhibit layer-specific molecular profiles and axonal connections. Here we show that the molecular identities of early-born subplate and deep-layer neurons are not acquired solely during generation or shortly thereafter but undergo progressive postmitotic refinement mediated by SOX5. Fezf2 and Bcl11b, transiently expressed in all subtypes of newly postmigratory early-born neurons, are subsequently downregulated in layer 6 and subplate neurons, thereby establishing their layer 5-enriched postnatal patterns. In Sox5-null mice, this downregulation is disrupted, and layer 6 and subplate neurons maintain an immature differentiation state, abnormally expressing these genes postnatally. Consistent with this disruption, SOX5 binds and represses a conserved enhancer near Fezf2. The Sox5-null neocortex exhibits failed preplate partition and laminar inversion of early-born neurons, loss of layer 5 subcerebral axons, and misrouting of subplate and layer 6 corticothalamic axons to the hypothalamus. Thus, SOX5 postmitotically regulates the migration, postmigratory differentiation, and subcortical projections of subplate and deep-layer neurons.
Development | 2012
Kenneth Y. Kwan; Nenad Sestan; E. S. Anton
The cerebral neocortex is segregated into six horizontal layers, each containing unique populations of molecularly and functionally distinct excitatory projection (pyramidal) neurons and inhibitory interneurons. Development of the neocortex requires the orchestrated execution of a series of crucial processes, including the migration of young neurons into appropriate positions within the nascent neocortex, and the acquisition of layer-specific neuronal identities and axonal projections. Here, we discuss emerging evidence supporting the notion that the migration and final laminar positioning of cortical neurons are also co-regulated by cell type- and layer-specific transcription factors that play concomitant roles in determining the molecular identity and axonal connectivity of these neurons. These transcriptional programs thus provide direct links between the mechanisms controlling the laminar position and identity of cortical neurons.
Proceedings of the National Academy of Sciences of the United States of America | 2011
Wenqi Han; Kenneth Y. Kwan; Sungbo Shim; Mandy M. S. Lam; Yurae Shin; Xuming Xu; Ying Zhu; Mingfeng Li; Nenad Sestan
The corticospinal (CS) tract is involved in controlling discrete voluntary skilled movements in mammals. The CS tract arises exclusively from layer (L) 5 projection neurons of the cerebral cortex, and its formation requires L5 activity of Fezf2 (Fezl, Zfp312). How this L5-specific pattern of Fezf2 expression and CS axonal connectivity is established with such remarkable fidelity had remained elusive. Here we show that the transcription factor TBR1 directly binds the Fezf2 locus and represses its activity in L6 corticothalamic projection neurons to restrict the origin of the CS tract to L5. In Tbr1 null mutants, CS axons ectopically originate from L6 neurons in a Fezf2-dependent manner. Consistently, misexpression of Tbr1 in L5 CS neurons suppresses Fezf2 expression and effectively abolishes the CS tract. Taken together, our findings show that TBR1 is a direct transcriptional repressor of Fezf2 and a negative regulator of CS tract formation that restricts the laminar origin of CS axons specifically to L5.
Nature | 2012
Sungbo Shim; Kenneth Y. Kwan; Mingfeng Li; Véronique Lefebvre; Nenad Sestan
The co-emergence of a six-layered cerebral neocortex and its corticospinal output system is one of the evolutionary hallmarks of mammals. However, the genetic programs that underlie their development and evolution remain poorly understood. Here we identify a conserved non-exonic element (E4) that acts as a cortex-specific enhancer for the nearby gene Fezf2 (also known as Fezl and Zfp312), which is required for the specification of corticospinal neuron identity and connectivity. We find that SOX4 and SOX11 functionally compete with the repressor SOX5 in the transactivation of E4. Cortex-specific double deletion of Sox4 and Sox11 leads to the loss of Fezf2 expression, failed specification of corticospinal neurons and, independent of Fezf2, a reeler-like inversion of layers. We show evidence supporting the emergence of functional SOX-binding sites in E4 during tetrapod evolution, and their subsequent stabilization in mammals and possibly amniotes. These findings reveal that SOX transcription factors converge onto a cis-acting element of Fezf2 and form critical components of a regulatory network controlling the identity and connectivity of corticospinal neurons.
Cell | 2012
Kenneth Y. Kwan; Mandy M. S. Lam; Matthew B. Johnson; Umber Dube; Sungbo Shim; Mladen-Roko Rasin; André M.M. Sousa; Sofia Fertuzinhos; Jie Guang Chen; Jon I. Arellano; Daniel W. Chan; Mihovil Pletikos; Lana Vasung; David H. Rowitch; Eric J. Huang; Michael L. Schwartz; Rob Willemsen; Ben A. Oostra; Pasko Rakic; Marija Heffer; Ivica Kostović; Miloš Judaš; Nenad Sestan
Fragile X syndrome (FXS), the leading monogenic cause of intellectual disability and autism, results from loss of function of the RNA-binding protein FMRP. Here, we show that FMRP regulates translation of neuronal nitric oxide synthase 1 (NOS1) in the developing human neocortex. Whereas NOS1 mRNA is widely expressed, NOS1 protein is transiently coexpressed with FMRP during early synaptogenesis in layer- and region-specific pyramidal neurons. These include midfetal layer 5 subcortically projecting neurons arranged into alternating columns in the prospective Brocas area and orofacial motor cortex. Human NOS1 translation is activated by FMRP via interactions with coding region binding motifs absent from mouse Nos1 mRNA, which is expressed in mouse pyramidal neurons, but not efficiently translated. Correspondingly, neocortical NOS1 protein levels are severely reduced in developing human FXS cases, but not FMRP-deficient mice. Thus, alterations in FMRP posttranscriptional regulation of NOS1 in developing neocortical circuits may contribute to cognitive dysfunction in FXS.
Cerebral Cortex | 2009
Sofia Fertuzinhos; Željka Krsnik; Yuka Imamura Kawasawa; Mladen-Roko Rasin; Kenneth Y. Kwan; Jie-Guang Chen; Miloš Judaš; Masaharu Hayashi; Nenad Sestan
Cortical excitatory glutamatergic projection neurons and inhibitory GABAergic interneurons follow substantially different developmental programs. In rodents, projection neurons originate from progenitors within the dorsal forebrain, whereas interneurons arise from progenitors in the ventral forebrain. In contrast, it has been proposed that in humans, the majority of cortical interneurons arise from progenitors within the dorsal forebrain, suggesting that their origin and migration is complex and evolutionarily divergent. However, whether molecularly defined human cortical interneuron subtypes originate from distinct progenitors, including those in the ventral forebrain, remains unknown. Furthermore, abnormalities in cortical interneurons have been linked to human disorders, yet no distinct cell population selective loss has been reported. Here we show that cortical interneurons expressing nitric oxide synthase 1, neuropeptide Y, and somatostatin, are either absent or substantially reduced in fetal and infant cases of human holoprosencephaly (HPE) with severe ventral forebrain hypoplasia. Notably, another interneuron subtype normally abundant from the early fetal period, marked by calretinin expression, and different subtypes of projection neuron were present in the cortex of control and HPE brains. These findings have important implications for the understanding of neuronal pathogenesis underlying the clinical manifestations associated with HPE and the developmental origins of human cortical interneuron diversity.
Nature Genetics | 2011
Tanyeri Barak; Kenneth Y. Kwan; Angeliki Louvi; Veysi Demirbilek; Serap Saygi; Beyhan Tüysüz; Murim Choi; Huseyin Boyaci; Katja Doerschner; Ying Zhu; Hande Kaymakçalan; Saliha Yılmaz; Mehmet Bakırcıoğlu; Ahmet Okay Caglayan; Ali K. Ozturk; Katsuhito Yasuno; William J. Brunken; Ergin Atalar; Cengiz Yalcinkaya; Alp Dinçer; Richard A. Bronen; Shrikant Mane; Tayfun Ozcelik; Richard P. Lifton; Nenad Sestan; Kaya Bilguvar; Murat Gunel
The biological basis for regional and inter-species differences in cerebral cortical morphology is poorly understood. We focused on consanguineous Turkish families with a single affected member with complex bilateral occipital cortical gyration abnormalities. By using whole-exome sequencing, we initially identified a homozygous 2-bp deletion in LAMC3, the laminin γ3 gene, leading to an immediate premature termination codon. In two other affected individuals with nearly identical phenotypes, we identified a homozygous nonsense mutation and a compound heterozygous mutation. In human but not mouse fetal brain, LAMC3 is enriched in postmitotic cortical plate neurons, localizing primarily to the somatodendritic compartment. LAMC3 expression peaks between late gestation and late infancy, paralleling the expression of molecules that are important in dendritogenesis and synapse formation. The discovery of the molecular basis of this unusual occipital malformation furthers our understanding of the complex biology underlying the formation of cortical gyrations.