Kenny Chitcholtan
University of Otago
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Kenny Chitcholtan.
Journal of Translational Medicine | 2012
Kenny Chitcholtan; Peter Sykes; John J. Evans
BackgroundAdvanced endometrial cancer often shows resistance to clinical chemotherapy although potencies of anticancer drugs in vitro are promising. The disparity suggests that in vi vo microenvironments are not recapitulated by in vitro models used for preclinical testing. However, spheroids replicate some important properties of tumours in vivo. Therefore, for the first time, we compared effects of doxorubicin and cisplatin on 3D multicellular structures and 2D cell monolayers of endometrial cancer cells.Methods3D multicellular structures were generated by culturing cancer cells on non-adherent surfaces; and for comparison cell monolayers were cultured on adherent culture plates. Ishikawa, RL95-2, and KLE cell lines were studied. Morphologies of 3D multicellular structures were examined. After 48 hours treatment with anticancer drugs, apoptosis, proliferation, glucose metabolism and vascular endothelial growth factor (VEGF) were analysed. Immunostaining of PCNA, Glut-1, p-Erk1/2, SOD-1 and p-Akt1/2/3 was also performed.ResultsDistinct 3D multicellular morphologies were formed by three different endometrial cancer cell lines. Doxorubicin induced less apoptosis in 3D multicellular structures of high grade cancer cells (RL95-2 and KLE cell lines) than in cell monolayers. Parallel alterations in Erk1/2 phosphorylation and cell proliferation might suggest they were linked and again doxorubicin had less effect on 3D multicellular structures than cell monolayers. On the other hand, there was no correlation between altered glucose metabolism and proliferation. The responses depended on cancer cell lines and were apparently not mediated by altered Glut-1 levels. The level of SOD-1 was high in 3D cell cultures. The effects on VEGF secretion were various and cancer cell line dependent. Importantly, both doxorubicin and cisplatin had selective paradoxical stimulatory effects on VEGF secretion. The microenvironment within 3D multicellular structures sustained Akt phosphorylation, consistent with it having a role in anchorage-independent pathways.ConclusionsThe cancer cells responded to microenvironments in a distinctive manner. 3D multicellular structures exhibited greater resistance to the agents than 2D monolayers, and the differences between the culture formats were dependent on cancer cell lines. The effects of anticancer drugs on the intracellular mediators were not similar in 3D and 2D cultures. Therefore, using 3D cell models may have a significant impact on conclusions derived from screening drugs for endometrial carcinomas.
Experimental Cell Research | 2013
Kenny Chitcholtan; Eric Asselin; Sophie Parent; Peter Sykes; John J. Evans
Three-dimensional (3D) in vitro models have an invaluable role in understanding the behaviour of tumour cells in a well defined microenvironment. This is because some aspects of tumour characteristics cannot be fully recapitulated in a cell monolayer (2D). In the present study, we compared growth patterns, expression of signalling molecules, and metabolism-associated proteins of endometrial cancer cell lines in 3D and 2D cell cultures. Cancer cells formed spherical structures in 3D reconstituted basement membrane (3D rBM), and the morphological appearance was cell line dependent. Cell differentiation was observed after 8 days in the 3D rBM. There was reduced proliferation, detected by less expression of PCNA in 3D rBM than in 2D cell monolayers. The addition of exogenous epidermal growth factor (EGF) to cancer cells induced phosphorylation of EGFR and Akt in both cell culture conditions. The uptake of glucose was selectively altered in the 3D rBM, but there was a lack of association with Glut-1 expression. The secretion of vascular endothelial growth factor (VEGF) and prostaglandin E(2) (PGE(2)) was selectively altered in 3D rBM, and it was cell line dependent. Our data demonstrated that 3D rBM as an in vitro model can influence proliferation and metabolism of endometrial cancer cell behaviour compared to 2D cell monolayer. Changes are specific to individual cell types. The use of 3D rBM is, therefore, important in the in vitro study of targeted anticancer therapies.
Food Chemistry | 2016
Moritz Lassé; Dulantha Ulluwishewa; Jackie P. Healy; Dion Thompson; Antonia G Miller; Nicole C. Roy; Kenny Chitcholtan; Juliet A. Gerrard
The structural properties of amyloid fibrils combined with their highly functional surface chemistry make them an attractive new food ingredient, for example as highly effective gelling agents. However, the toxic role of amyloid fibrils in disease may cause some concern about their food safety because it has not been established unequivocally if consumption of food fibrils poses a health risk to consumers. Here we present a study of amyloid-like fibrils from whey, kidney bean, soy bean, and egg white to partially address this concern. Fibrils showed varied resistance to proteolytic digestion in vitro by either Proteinase K, pepsin or pancreatin. The toxicity of mature fibrils was measured in vitro and compared to native protein, early-stage-fibrillar protein, and sonicated fibrils in two immortalised human cancer cell lines, Caco-2 and Hec-1a. There was no reduction in the viability of either Caco-2 or Hec-1a cells after treatment with a fibril concentration of up to 0.25 mg/mL.
Journal of Ovarian Research | 2016
Alexandria B. Tino; Kenny Chitcholtan; Peter Sykes; Ashley Garrill
BackgroundKey features of advanced ovarian cancer include metastasis via cell clusters in the abdominal cavity and increased chemoresistance. Resveratrol and derivatives of resveratrol have been shown to have antitumour properties. The purpose of this study was to investigate the effect of resveratrol and acetyl-resveratrol on 3D cell aggregates of ovarian cancer, and establish if NF-κB signalling may be a potential target.MethodsPoly-HEMA coated wells were used to produce 3D aggregates of two ovarian cancer cell lines, SKOV-3 and OVCAR-5. The aggregates were exposed to 10, 20 or 30 μM resveratrol or acetyl-resveratrol for 2, 4 or 6 days. Cell growth and metabolism were measured then ELISA, western blot and immunofluorescence were utilised to evaluate VEGF, IL-8 and NF-κB levels.ResultsResveratrol and acetyl-resveratrol reduced cell growth and metabolism of SKOV-3 aggregates in a dose- and time-dependent manner. After 6 days all three doses of both compounds inhibited cell growth. This growth inhibition correlated with the attenuated secretion of VEGF and a decrease of NF-κB protein levels. Conversely, the secretion of IL-8 increased with treatment. The effects of the compounds were limited in OVCAR-5 cell clusters.ConclusionsThe results suggest that resveratrol and its derivative acetyl-resveratrol may inhibit in vitro 3D cell growth of certain subtypes of ovarian cancer, and growth restriction may be associated with the secretion of VEGF under the control of the NF-κB protein.
Canadian Journal of Microbiology | 2012
Kenny Chitcholtan; Elisa Harris; YuPing Yu; Chad Harland; Ashley Garrill
The structure and function of membrane-wall attachment sites in walled cells, and how these relate to animal focal adhesions, is an area that is poorly understood. In view of this, we investigated how membrane-wall attachments that form upon plasmolysis, respond to peptides that disrupt animal focal adhesions. The degree of cytoplasmic disruption during plasmolysis was also investigated. Upon hyperosmotic challenge, the protoplast in hyphae of the oomycete Achlya bisexualis typically retracted incompletely due to membrane-wall attachments. The inclusion, in the plasmolysing solution, of peptides containing the sequence RGD disrupted these attachments in a dose-dependent manner. In some hyphae, protoplast retraction stopped temporarily at attachment points - upon resumption of retraction, material was left that traced the outline of the static protoplast. Staining of this material with fluorescence brightener indicated the presence of cellulose, which suggests that wall deposition was able to occur despite plasmolysis. The F-actin cytoskeleton was disrupted during plasmolysis; peripheral F-actin staining was observed, but there was no distinct F-actin cap; staining was more diffuse; and there were fewer plaques compared with nonplasmolysed hyphae. Our data indicate that membrane-wall attachment points are sensitive to RGD-containing peptides and that wall deposition continues despite protoplast retraction and F-actin disruption.
Obstetrics and Gynecology International | 2015
Simon J. Hogg; Kenny Chitcholtan; Wafaa Hassan; Peter Sykes; Ashley Garrill
Resveratrol has aroused significant scientific interest as it has been claimed that it exhibits a spectrum of health benefits. These include effects as an anti-inflammatory and an antitumour compound. The purpose of this study was to investigate and compare any potential antigrowth effects of resveratrol and two of its derivatives, acetyl-resveratrol and polydatin, on 3D cell aggregates of the EGFR/Her-2 positive and negative ovarian cancer cell lines SKOV-3 and OVCAR-8, respectively. Results showed that resveratrol and acetyl-resveratrol reduced cell growth in the SKOV-3 and OVCAR-8 in a dose-dependant manner. The growth reduction was mediated by the induction of apoptosis via the cleavage of poly(ADP-ribose) polymerase (PARP-1). At lower concentrations, 5 and 10 µM, resveratrol, acetyl-resveratrol, and polydatin were less effective than higher concentrations, 50 and 100 µM. In SKOV-3 line, at higher concentrations, resveratrol and polydatin significantly reduced the phosphorylation of Her-2 and EGFR and the expression of Erk. Acetyl-resveratrol, on the other hand, did not change the activation of Her-2 and EGFR. Resveratrol, acetyl-resveratrol, and polydatin suppressed the secretion of VEGF in a dose-dependant fashion. In the OVCAR-8 cell line, resveratrol and acetyl-resveratrol at 5 and 10 µM increased the activation of Erk. Above these concentrations they decreased activation. Polydatin did not produce this effect. This study demonstrates that resveratrol and its derivatives may inhibit growth of 3D cell aggregates of ovarian cancer cell lines via different signalling molecules. Resveratrol and its derivatives, therefore, warrant further in vivo evaluation to assess their potential clinical utility.
Journal of Ovarian Research | 2015
Simon J. Hogg; John J. Evans; Peter Sykes; Kenny Chitcholtan
BackgroundAn early step of advanced ovarian cancer begins when floating cancerous cells as single cells or small clusters grow on the peritoneal surface. This surface is rich in extracellular matrix (ECM) proteins, which have profound effects on cellular behaviour and can facilitate cancer progression. Subsequently, this ECM may alter cellular metabolism making cancer cells susceptible to chemotherapeutic agents differently. Therefore, generating a cell culture tool in vitro that includes the interaction between ECM and cancer cells will facilitate our understanding of how cancer cells behave during cancer treatment. There is some evidence to suggest that in an in vitro model that includes ECM components such as collagens will provide a better predictive tool for drug evaluation than a traditional cell monolayer (2D) culture model.FindingsAs a proof -of- concept, we made a collagen gel in a 96-well plate format and utilised this to evaluate the efficacy of clinical cytotoxic drugs, a targeted drug, and food compounds in single and combination treatments. The primary endpoints were to measure the reduction of cellular metabolism and secretion of vascular endothelial growth factor (VEGF). The invasive capacity of cancer cells was observed in collagen gels and it was cell line-dependent. The responses to drugs were prominently observed in collagen gels, but they had little effect on 2D cell monolayers. These responses were cell line- and type of drug-dependent.ConclusionsThe collagen gel in a 96 well plate format was easy to set up and could have potential to identify drug sensitivity in the clinical management of women with platinum resistant ovarian cancer.
Cancer Letters | 2018
Wafaa Hassan; Kenny Chitcholtan; Peter Sykes; Ashley Garrill
Ovarian cancer patients in the advanced stages of the disease show clinical ascites, which is associated with a poor prognosis. There is limited understanding of the effect of ascitic fluid on ovarian cancer cells and their response to anticancer drugs. We investigated the antitumour effects of EGFR/Her-2 (canertinib) and c-Met (PHA665752) inhibitors in a 3D cell model of three ovarian cancer lines. Single and combined inhibitor treatments affected cell growth of OVCAR-5 and SKOV-3 cell lines but not OV-90 cell line. Growth reduction was correlated with the down expression of PCNA, EGFR, HER-2, c-MET, ERK and AKT and their phosphorylation status in cells in growth factor supplemented media. However, these effects were not re-producible in OVCAR-5 and SKOV-3 cell lines when they were exposed to ascitic fluid obtained from three ovarian cancer patients. Serum albumin and protein components in the ascitic fluids may reduce the cellular uptake of the inhibitors.
Nanotechnology | 2017
Dhiraj Kumar; Isha Mutreja; Kenny Chitcholtan; Peter Sykes
Nanomedicine has advanced the biomedical field with the availability of multifunctional nanoparticles (NPs) systems that can target a disease site enabling drug delivery and helping to monitor the disease. In this paper, we synthesised the gold nanoparticles (AuNPs) with an average size 18, 40, 60 and 80 nm, and studied the effect of nanoparticles size, concentration and incubation time on ovarian cancer cells namely, OVCAR5, OVCAR8, and SKOV3. The size measured by transmission electron microscopy images was slightly smaller than the hydrodynamic diameter; measured size by ImageJ as 14.55, 38.13, 56.88 and 78.56 nm. The cellular uptake was significantly controlled by the AuNPs size, concentration, and the cell type. The nanoparticles uptake increased with increasing concentration, and 18 and 80 nm AuNPs showed higher uptake ranging from 1.3 to 5.4 μg depending upon the concentration and cell type. The AuNPs were associated with a temporary reduction in metabolic activity, but metabolic activity remained more than 60% for all sample types; NPs significantly affected the cell proliferation activity in first 12 h. The increase in nanoparticle size and concentration induced the production of reactive oxygen species in 24 h.
Edorium Journal of Gynecology and Obstetrics | 2016
Kenny Chitcholtan
Epithelial ovarian cancer is a malignancy of the ovaries. The exact origin of ovarian cancer cells is still under ongoing scientific debate. Early detection is very crucial for a favorable prognosis in ovarian cancer patients, and that will increase the chance of survival by 90% [1]. However, it is uncommon for patients to be diagnosed at the early stage of the disease because the signs and symptoms are easily dismissed. As a result, most patients has been presented at the advanced stage 3 or stage 4 ovarian cancer. At these stages, patients will have a slim survival rate below 30% [1]. Ovarian cancer at stages 3 and 4 displays an extensive spread of cancer cells within the abdominal cavity, and tumor nodules reside on the internal organs [2]. The choice of chemotherapy is very limited to treat advanced ovarian cancer. There are several cytotoxic agents used in the treatment of other cancers which potentially slow down tumor growth, but we cannot predict the efficacy of these agents in advanced ovarian cancer because selective clinical trials showed ineffectiveness of some of these agents and variation in patient’s responses [3].