Kenrick Semple
University of South Florida
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Kenrick Semple.
Blood | 2011
Yu Yu; Dapeng Wang; Chen Liu; Kane Kaosaard; Kenrick Semple; Claudio Anasetti; Xue-Zhong Yu
Allogeneic hematopoietic cell transplantation (HCT) is effective therapy for hematologic malignancies through T cell-mediated GVL effects. However, HCT benefits are frequently offset by the destructive GVHD, which is also induced by donor T cells. Naive Th can differentiate into Th1 and Th17 subsets and both can mediate GVHD after adoptive transfer into an allogeneic host. Here we tested the hypothesis that blockade of Th1 and Th17 differentiation is required to prevent GVHD in mice. T cells with combined targeted disruption of T-bet and RORγt have defective differentiation toward Th1 and Th17 and skewed differentiation toward Th2 and regulatory phenotypes, and caused ameliorated GVHD in a major MHC-mismatched model of HCT. GVL effects mediated by granzyme-positive CD8 T cells were largely preserved despite T-bet and RORγt deficiency. These data indicate that GVHD can be prevented by targeting Th1 and Th17 transcription factors without offsetting GVL activity.
Blood | 2011
Kenrick Semple; Antony Nguyen; Yu Yu; Honglin Wang; Claudio Anasetti; Xue-Zhong Yu
CD28 costimulation is required for the generation of naturally derived regulatory T cells (nTregs) in the thymus through lymphocyte-specific protein tyrosine kinase (Lck) signaling. However, it is not clear how CD28 costimulation regulates the generation of induced Tregs (iTregs) from naive CD4 T-cell precursors in the periphery. To address this question, we induced iTregs (CD25(+)Foxp3(+)) from naive CD4 T cells (CD25(-)Foxp3(-)) by T-cell receptor stimulation with additional transforming growth factorβ (TGFβ) in vitro, and found that the generation of iTregs was inversely related to the level of CD28 costimulation independently of IL-2. Using a series of transgenic mice on a CD28-deficient background that bears wild-type or mutated CD28 in its cytosolic tail that is incapable of binding to Lck, phosphoinositide 3-kinase (PI3K), or IL-2-inducible T-cell kinase (Itk), we found that CD28-mediated Lck signaling plays an essential role in the suppression of iTreg generation under strong CD28 costimulation. Furthermore, we demonstrate that T cells with the CD28 receptor incapable of activating Lck were prone to iTreg induction in vivo, which contributed to their reduced ability to cause graft-versus-host disease. These findings reveal a novel mechanistic insight into how CD28 costimulation negatively regulates the generation of iTregs, and provide a rationale for promoting T-cell immunity or tolerance by regulating Tregs through targeting CD28 signaling.
Biology of Blood and Marrow Transplantation | 2011
Jun Li; Kenrick Semple; Woong-Kyung Suh; Chen Liu; Fangping Chen; Bruce R. Blazar; Xue-Zhong Yu
T cells deficient for CD28 have reduced ability to expand and survive, but still cause graft-versus-host disease (GVHD). Inducible costimulator (ICOS), a member of the CD28 family, is expressed on antigen-activated T cells and plays unique roles in T cell activation and effector function. We hypothesized that ICOS contributes to the development of GVHD in the absence of B7:CD28/CTLA4 costimulation. In this study, we evaluated the roles of CD28, CTLA4, and ICOS in the pathogenesis of acute GVHD after myeloablative allogeneic bone marrow transplantation. Unexpectedly, we found that blocking CD28 and CTLA4 signals using the clinically relevant reagent CTLA4-Ig increases the severity of GVHD mediated by CD4(+) T cells, and that such treatment does not add any benefit to the blockade of ICOS. In contrast, selectively blocking CD28 and ICOS, but not CTLA4, prevents GVHD more effectively than blocking either CD28 or ICOS alone. Taken together, these results indicate that CD28 and ICOS are synergistic in promoting GVHD, whereas the CTLA4 signal is required for T cell tolerance regardless of ICOS signaling. Thus, blocking CD28 and ICOS while sparing CTLA4 represents a promising approach for abrogating pathogenic T cell responses after allogeneic bone marrow transplantation.
Biology of Blood and Marrow Transplantation | 2011
Kenrick Semple; Yu Yu; Dapeng Wang; Claudio Anasetti; Xue-Zhong Yu
Naturally occurring regulatory T cells (nTregs) suppress the development of graft-versus-host disease (GVHD) and may spare graft-versus-leukemia (GVL) effect. Because nTreg is a rare population in a healthy individual, the limited source and the non-selective suppression are major hurdles towards the application of nTregs in the control of clinical GVHD after allogeneic hematopoietic cell transplantation (HCT). An alternative approach is to generate induced Tregs (iTregs) from naïve CD4 precursors, but the effectiveness of iTregs in the control of GVHD is highly controversial and requires further investigation. The other critical but unsolved issue in Treg therapy is how to achieve antigen (Ag)-specific tolerance that distinguishes GVHD and GVL effects. To address the important issues on the effectiveness of iTregs and Ag-specificity of Tregs, we generated Ag-specific iTregs and tested their potential in the prevention of GVHD in a pre-clinical bone marrow transplantation (BMT) model. CD4(+)CD25(+)Foxp3(+) iTregs generated from OT-II TCR transgenic T cells specific for OVA target Ag efficiently prevented GVHD induced by polyclonal T effector cells (Teffs) only in the allogeneic recipients that express OVA protein but not in OVA(-) recipients. The efficacy of these Ag-specific iTregs was significantly higher than polyclonal iTregs. As controls, OT-II CD4(+)Foxp3(-) cells had no effect on GVHD development in OVA(-) recipients and exacerbated GVHD in OVA(+) recipients when transplanted together with polyclonal Teffs. Because the iTregs recognize OVA whereas Teffs recognize alloAg bm12, our data reveal for the first time, to our knowledge, that Tregs prevent GVHD through a linked suppression. Mechanistically, OT-II iTregs expanded extensively, and significantly suppressed expansion and infiltration of Teffs in OVA(+) but not in OVA(-) recipients. These results demonstrate that Ag-specific iTregs can prevent GVHD efficiently and selectively, providing a proof of principle that Ag-specific iTregs may represent a promising cell therapy for their specificity and higher efficacy in allogeneic HCT.
Journal of Immunology | 2013
Jun Li; Jessica Heinrichs; Julien Leconte; Kelley Haarberg; Kenrick Semple; Chen Liu; Mathieu Gigoux; Mara Kornete; Ciriaco A. Piccirillo; Woong-Kyung Suh; Xue-Zhong Yu
We and others have previously shown that ICOS plays an important role in inducing acute graft-versus-host disease (GVHD) in murine models of allogeneic bone marrow transplantation. ICOS potentiates TCR-mediated PI3K activation and intracellular calcium mobilization. However, ICOS signal transduction pathways involved in GVHD remain unknown. In this study, we examined the contribution of ICOS-PI3K signaling in the pathogenic potential of T cells using a knock-in mouse strain, ICOS-YF, which selectively lost the ability to activate PI3K. We found that when total T cells were used as alloreactive T cells, ICOS-YF T cells caused less severe GVHD compared with ICOS wild-type T cells, but they induced much more aggressive disease than ICOS knockout T cells. This intermediate level of pathogenic capacity of ICOS-YF T cells was correlated with similar levels of IFN-γ–producing CD8 T cells that developed in the recipients of ICOS-WT or ICOS-YF T cells. We further evaluated the role of ICOS-PI3K signaling in CD4 versus CD8 T cell compartment using GVHD models that are exclusively driven by CD4 or CD8 T cells. Remarkably, ICOS-YF CD8 T cells caused disease similar to ICOS wild-type CD8 T cells, whereas ICOS-YF CD4 T cells behaved very similarly to their ICOS knockout counterparts. Consistent with their in vivo pathogenic potential, CD8 T cells responded to ICOS ligation in vitro by PI3K-independent calcium flux, T cell activation, and proliferation. Thus, in acute GVHD in mice, CD4 T cells heavily rely on ICOS-PI3K signaling pathways; in contrast, CD8 T cells can use PI3K-independent ICOS signaling pathways, possibly through calcium.
Journal of Immunology | 2015
Jun Li; Jessica Heinrichs; Kelley Haarberg; Kenrick Semple; Anandharaman Veerapathran; Chen Liu; Claudio Anasetti; Xue-Zhong Yu
Naturally derived regulatory T cells (Tregs) may prevent graft-versus-host disease (GVHD) while preserving graft-versus-leukemia (GVL) activity. However, clinical application of naturally derived regulatory T cells has been severely hampered by their scarce availability and nonselectivity. To overcome these limitations, we took alternative approaches to generate Ag-specific induced Tregs (iTregs) and tested their efficacy and selectivity in the prevention of GVHD in preclinical models of bone marrow transplantation. We selected HY as a target Ag because it is a naturally processed, ubiquitously expressed minor histocompatibility Ag (miHAg) with a proven role in GVHD and GVL effect. We generated HY-specific iTregs (HY-iTregs) from resting CD4 T cells derived from TCR transgenic mice, in which CD4 cells specifically recognize HY peptide. We found that HY-iTregs were highly effective in preventing GVHD in male (HY+) but not female (HY−) recipients using MHC II-mismatched, parent→F1, and miHAg-mismatched murine bone marrow transplantation models. Interestingly, the expression of target Ag (HY) on the hematopoietic or nonhematopoietic compartment alone was sufficient for iTregs to prevent GVHD. Furthermore, treatment with HY-iTregs still preserved the GVL effect even against pre-established leukemia. We found that HY-iTregs were more stable in male than in female recipients. Furthermore, HY-iTregs expanded extensively in male but not female recipients, which in turn significantly reduced donor effector T cell expansion, activation, and migration into GVHD target organs, resulting in effective prevention of GVHD. This study demonstrates that iTregs specific for HY miHAgs are highly effective in controlling GVHD in an Ag-dependent manner while sparing the GVL effect.
Blood | 2010
Dapeng Wang; Fengdong Cheng; Yu Yu; Kenrick Semple; Lirong Peng; Elphine Telles; Noreen Luetteke; Edward Seto; Claudio Anasetti; Eduardo M. Sotomayor; Xue-Zhong Yu
Archive | 2013
Ciriaco A. Piccirillo; Woong-Kyung Suh; Xue-Zhong Yu; Kenrick Semple; Chen Liu; Mathieu Gigoux; Mara Kornete; Jun Li; Jessica Heinrichs; Julien Leconte; Kelley Haarberg
Journal of Immunology | 2012
Xue-Zhong Yu; Kenrick Semple; Julien Leconte; Woong-Kyung Suh; Jun Li
Blood | 2012
Jun Li; Kenrick Semple; Jessica Heinrichs; Anandharaman Veerapathran; Kelley Haarberg; Kane Koasaard; Claudio Anasetti; Xue-Zhong Yu