Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Kensaku Sakamoto is active.

Publication


Featured researches published by Kensaku Sakamoto.


Biochemical and Biophysical Research Communications | 2008

Adding l-lysine derivatives to the genetic code of mammalian cells with engineered pyrrolysyl-tRNA synthetases

Takahito Mukai; Takatsugu Kobayashi; Nobumasa Hino; Tatsuo Yanagisawa; Kensaku Sakamoto; Shigeyuki Yokoyama

We report a method for site-specifically incorporating l-lysine derivatives into proteins in mammalian cells, based on the expression of the pyrrolysyl-tRNA synthetase (PylRS)-tRNA(Pyl) pair from Methanosarcina mazei. Different types of external promoters were tested for the expression of tRNA(Pyl) in Chinese hamster ovary cells. When tRNA(Pyl) was expressed from a gene cluster under the control of the U6 promoter, the wild-type PylRS-tRNA(Pyl) pair facilitated the most efficient incorporation of a pyrrolysine analog, N(epsilon)-tert-butyloxycarbonyl-l-lysine (Boc-lysine), into proteins at the amber position. This PylRS-tRNA(Pyl) system yielded the Boc-lysine-containing protein in an amount accounting for 1% of the total protein in human embryonic kidney (HEK) 293 cells. We also created a PylRS variant specific to N(epsilon)-benzyloxycarbonyl-l-lysine, to incorporate this long, bulky, non-natural lysine derivative into proteins in HEK293. The recently reported variant specific to N(epsilon)-acetyllysine was also expressed, resulting in the genetic encoding of this naturally-occurring lysine modification in mammalian cells.


Journal of Molecular Biology | 2008

Crystallographic Studies on Multiple Conformational States of Active-site Loops in Pyrrolysyl-tRNA Synthetase

Tatsuo Yanagisawa; Ryohei Ishii; Ryuya Fukunaga; Takatsugu Kobayashi; Kensaku Sakamoto; Shigeyuki Yokoyama

Pyrrolysine, a lysine derivative with a bulky pyrroline ring, is the 22nd genetically encoded amino acid. In the present study, the carboxy-terminal catalytic fragment of Methanosarcina mazei pyrrolysyl-tRNA synthetase (PylRS) was analyzed by X-ray crystallography and site-directed mutagenesis. The catalytic fragment ligated tRNA(Pyl) with pyrrolysine nearly as efficiently as the full-length PylRS. We determined the crystal structures of the PylRS catalytic fragment in the substrate-free, ATP analogue (AMPPNP)-bound, and AMPPNP/pyrrolysine-bound forms, and compared them with the previously-reported PylRS structures. The ordering loop and the motif-2 loop undergo conformational changes from the open states to the closed states upon AMPPNP binding. On the other hand, the beta 7-beta 8 hairpin exhibits multiple conformational states, the open, intermediate (beta 7-open/beta 8-open and beta 7-closed/beta 8-open), and closed states, which are not induced upon substrate binding. The PylRS structures with a docked tRNA suggest that the active-site pocket can accommodate the CCA terminus of tRNA when the motif-2 loop is in the closed state and the beta 7-beta 8 hairpin is in the open or intermediate state. The entrance of the active-site pocket is nearly closed in the closed state of the beta 7-beta 8 hairpin, which may protect the pyrrolysyladenylate intermediate in the absence of tRNA(Pyl). Moreover, a structure-based mutational analysis revealed that hydrophobic residues in the amino acid-binding tunnel are important for accommodating the pyrrolysine side chain and that Asn346 is essential for anchoring the side-chain carbonyl and alpha-amino groups of pyrrolysine. In addition, a docking model of PylRS with tRNA was constructed based on the aspartyl-tRNA synthetase/tRNA structure, and was confirmed by a mutational analysis.


Journal of Molecular Biology | 2009

Recognition of Non-α-amino Substrates by Pyrrolysyl-tRNA Synthetase

Takatsugu Kobayashi; Tatsuo Yanagisawa; Kensaku Sakamoto; Shigeyuki Yokoyama

Pyrrolysyl-tRNA synthetase (PylRS), an aminoacyl-tRNA synthetase (aaRS) recently found in some methanogenic archaea and bacteria, recognizes an unusually large lysine derivative, L-pyrrolysine, as the substrate, and attaches it to the cognate tRNA (tRNA(Pyl)). The PylRS-tRNA(Pyl) pair interacts with none of the endogenous aaRS-tRNA pairs in Escherichia coli, and thus can be used as a novel aaRS-tRNA pair for genetic code expansion. The crystal structures of the Methanosarcina mazei PylRS revealed that it has a unique, large pocket for amino acid binding, and the wild type M. mazei PylRS recognizes the natural lysine derivative as well as many lysine analogs, including N(epsilon)-(tert-butoxycarbonyl)-L-lysine (Boc-lysine), with diverse side chain sizes and structures. Moreover, the PylRS only loosely recognizes the alpha-amino group of the substrate, whereas most aaRSs, including the structurally and genetically related phenylalanyl-tRNA synthetase (PheRS), strictly recognize the main chain groups of the substrate. We report here that wild type PylRS can recognize substrates with a variety of main-chain alpha-groups: alpha-hydroxyacid, non-alpha-amino-carboxylic acid, N(alpha)-methyl-amino acid, and D-amino acid, each with the same side chain as that of Boc-lysine. In contrast, PheRS recognizes none of these amino acid analogs. By expressing the wild type PylRS and its cognate tRNA(Pyl) in E. coli in the presence of the alpha-hydroxyacid analog of Boc-lysine (Boc-LysOH), the amber codon (UAG) was recoded successfully as Boc-LysOH, and thus an ester bond was site-specifically incorporated into a protein molecule. This PylRS-tRNA(Pyl) pair is expected to expand the backbone diversity of protein molecules produced by both in vivo and in vitro ribosomal translation.


Structure | 2009

Genetic Encoding of 3-Iodo-l-Tyrosine in Escherichia coli for Single-Wavelength Anomalous Dispersion Phasing in Protein Crystallography

Kensaku Sakamoto; Kazutaka Murayama; Kenji Oki; Fumie Iraha; Miyuki Kato-Murayama; Masahiro Takahashi; Kazumasa Ohtake; Takatsugu Kobayashi; Seiki Kuramitsu; Mikako Shirouzu; Shigeyuki Yokoyama

We developed an Escherichia coli cell-based system to generate proteins containing 3-iodo-L-tyrosine at desired sites, and we used this system for structure determination by single-wavelength anomalous dispersion (SAD) phasing with the strong iodine signal. Tyrosyl-tRNA synthetase from Methanocaldococcus jannaschii was engineered to specifically recognize 3-iodo-L-tyrosine. The 1.7 A crystal structure of the engineered variant, iodoTyrRS-mj, bound with 3-iodo-L-tyrosine revealed the structural basis underlying the strict specificity for this nonnatural substrate; the iodine moiety makes van der Waals contacts with 5 residues at the binding pocket. E. coli cells expressing iodoTyrRS-mj and the suppressor tRNA were used to incorporate 3-iodo-L-tyrosine site specifically into the ribosomal protein N-acetyltransferase from Thermus thermophilus. The crystal structure of this enzyme with iodotyrosine was determined at 1.8 and 2.2 Angstroms resolutions by SAD phasing at CuK alpha and CrK alpha wavelengths, respectively. The native structure, determined by molecular replacement, revealed no significant structural distortion caused by iodotyrosine incorporation.


EMBO Reports | 2015

Ubiquitin acetylation inhibits polyubiquitin chain elongation

Fumiaki Ohtake; Yasushi Saeki; Kensaku Sakamoto; Kazumasa Ohtake; Hiroyuki Nishikawa; Hikaru Tsuchiya; Tomohiko Ohta; Keiji Tanaka; Jun Kanno

Ubiquitylation is a versatile post‐translational modification (PTM). The diversity of ubiquitylation topologies, which encompasses different chain lengths and linkages, underlies its widespread cellular roles. Here, we show that endogenous ubiquitin is acetylated at lysine (K)‐6 (AcK6) or K48. Acetylated ubiquitin does not affect substrate monoubiquitylation, but inhibits K11‐, K48‐, and K63‐linked polyubiquitin chain elongation by several E2 enzymes in vitro. In cells, AcK6‐mimetic ubiquitin stabilizes the monoubiquitylation of histone H2B—which we identify as an endogenous substrate of acetylated ubiquitin—and of artificial ubiquitin fusion degradation substrates. These results characterize a mechanism whereby ubiquitin, itself a PTM, is subject to another PTM to modulate mono‐ and polyubiquitylation, thus adding a new regulatory layer to ubiquitin biology.


Nucleic Acids Research | 2015

Reassignment of a rare sense codon to a non-canonical amino acid in Escherichia coli

Takahito Mukai; Atsushi Yamaguchi; Kazumasa Ohtake; Mihoko Takahashi; Akiko Hayashi; Fumie Iraha; Satoshi Kira; Tatsuo Yanagisawa; Shigeyuki Yokoyama; Hiroko Hoshi; Takatsugu Kobayashi; Kensaku Sakamoto

The immutability of the genetic code has been challenged with the successful reassignment of the UAG stop codon to non-natural amino acids in Escherichia coli. In the present study, we demonstrated the in vivo reassignment of the AGG sense codon from arginine to l-homoarginine. As the first step, we engineered a novel variant of the archaeal pyrrolysyl-tRNA synthetase (PylRS) able to recognize l-homoarginine and l-N6-(1-iminoethyl)lysine (l-NIL). When this PylRS variant or HarRS was expressed in E. coli, together with the AGG-reading tRNAPylCCU molecule, these arginine analogs were efficiently incorporated into proteins in response to AGG. Next, some or all of the AGG codons in the essential genes were eliminated by their synonymous replacements with other arginine codons, whereas the majority of the AGG codons remained in the genome. The bacterial hosts ability to translate AGG into arginine was then restricted in a temperature-dependent manner. The temperature sensitivity caused by this restriction was rescued by the translation of AGG to l-homoarginine or l-NIL. The assignment of AGG to l-homoarginine in the cells was confirmed by mass spectrometric analyses. The results showed the feasibility of breaking the degeneracy of sense codons to enhance the amino-acid diversity in the genetic code.


Protein Science | 2010

Genetic encoding of non‐natural amino acids in Drosophila melanogaster Schneider 2 cells

Takahito Mukai; Motoaki Wakiyama; Kensaku Sakamoto; Shigeyuki Yokoyama

Insect cells are useful for the high‐yield production of recombinant proteins including chemokines and membrane proteins. In this study, we developed an insect cell‐based system for incorporating non‐natural amino acids into proteins at specific sites. Three types of promoter systems were constructed, and their efficiencies were compared for the expression of the prokaryotic amber suppressor tRNATyr in Drosophila melanogaster Schneider 2 cells. When paired with a variant of Escherichia coli tyrosyl‐tRNA synthetase specific for 3‐iodo‐L‐tyrosine, the suppressor tRNA transcribed from the U6 promoter most efficiently incorporated the amino acid into proteins in the cells. The transient and stable introductions of these prokaryotic molecules into the insect cells were then compared in terms of the yield of proteins containing non‐natural amino acids, and the “transient” method generated a sevenfold higher yield. By this method, 4‐azido‐L‐phenylalanine was incorporated into human interleukin‐8 at a specific site. The yield of the azido‐containing IL‐8 was 1 μg/1 mL cell culture, and the recombinant protein was successfully labeled with a fluorescent probe by the Staudinger–Bertozzi reaction.


Proceedings of the National Academy of Sciences of the United States of America | 2008

Transplantation of a tyrosine editing domain into a tyrosyl-tRNA synthetase variant enhances its specificity for a tyrosine analog

Kenji Oki; Kensaku Sakamoto; Takatsugu Kobayashi; Hiroshi Sasaki; Shigeyuki Yokoyama

To guarantee specific tRNA and amino acid pairing, several aminoacyl-tRNA synthetases correct aminoacylation errors by deacylating or “editing” misaminoacylated tRNA. A previously developed variant of Escherichia coli tyrosyl-tRNA synthetase (iodoTyrRS) esterifies or “charges” tRNATyr with a nonnatural amino acid, 3-iodo-l-tyrosine, and with l-tyrosine less efficiently. In the present study, the editing domain of phenylalanyl-tRNA synthetase (PheRS) was transplanted into iodoTyrRS to edit tyrosyl-tRNATyr and thereby improve the overall specificity for 3-iodo-l-tyrosine. The β-subunit fragments of the PheRSs from Pyrococcus horikoshii and two bacteria were tested for editing activity. The isolated B3/4 editing domain of the archaeal PheRS, which was exogenously added to the tyrosylation reaction with iodoTyrRS, efficiently reduced the production of tyrosyl-tRNATyr. In addition, the transplantation of this domain into iodoTyrRS at the N terminus prevented tyrosyl-tRNATyr production most strongly among the tested fragments. We next transplanted this archaeal B3/4 editing domain into iodoTyrRS at several internal positions. Transplantation into the connective polypeptide in the Rossmann-fold domain generated a variant that efficiently charges tRNATyr with 3-iodo-l-tyrosine, but hardly produces tyrosyl-tRNATyr. This variant, iodoTyrRS-ed, was used, together with an amber suppressor derived from tRNATyr, in a wheat germ cell-free translation system and incorporated 3-iodo-l-tyrosine, but not l-tyrosine, in response to the amber codon. Thus, the editing-domain transplantation achieved unambiguous pairing between the tRNA and the nonnatural amino acid in an expanded genetic code.


Nature | 2016

Crystal structure of eukaryotic translation initiation factor 2B

Kazuhiro Kashiwagi; Mari Takahashi; Madoka Nishimoto; Takuya B. Hiyama; Toshiaki Higo; Takashi Umehara; Kensaku Sakamoto; Takuhiro Ito; Shigeyuki Yokoyama

Eukaryotic cells restrict protein synthesis under various stress conditions, by inhibiting the eukaryotic translation initiation factor 2B (eIF2B). eIF2B is the guanine nucleotide exchange factor for eIF2, a heterotrimeric G protein consisting of α-, β- and γ-subunits. eIF2B exchanges GDP for GTP on the γ-subunit of eIF2 (eIF2γ), and is inhibited by stress-induced phosphorylation of eIF2α. eIF2B is a heterodecameric complex of two copies each of the α-, β-, γ-, δ- and ε-subunits; its α-, β- and δ-subunits constitute the regulatory subcomplex, while the γ- and ε-subunits form the catalytic subcomplex. The three-dimensional structure of the entire eIF2B complex has not been determined. Here we present the crystal structure of Schizosaccharomyces pombe eIF2B with an unprecedented subunit arrangement, in which the α2β2δ2 hexameric regulatory subcomplex binds two γε dimeric catalytic subcomplexes on its opposite sides. A structure-based in vitro analysis by a surface-scanning site-directed photo-cross-linking method identified the eIF2α-binding and eIF2γ-binding interfaces, located far apart on the regulatory and catalytic subcomplexes, respectively. The eIF2γ-binding interface is located close to the conserved ‘NF motif’, which is important for nucleotide exchange. A structural model was constructed for the complex of eIF2B with phosphorylated eIF2α, which binds to eIF2B more strongly than the unphosphorylated form. These results indicate that the eIF2α phosphorylation generates the ‘nonproductive’ eIF2–eIF2B complex, which prevents nucleotide exchange on eIF2γ, and thus provide a structural framework for the eIF2B-mediated mechanism of stress-induced translational control.


Nucleic Acids Research | 2010

Functional replacement of the endogenous tyrosyl-tRNA synthetase–tRNATyr pair by the archaeal tyrosine pair in Escherichia coli for genetic code expansion

Fumie Iraha; Kenji Oki; Takatsugu Kobayashi; Satoshi Ohno; Takashi Yokogawa; Kazuya Nishikawa; Shigeyuki Yokoyama; Kensaku Sakamoto

Non-natural amino acids have been genetically encoded in living cells, using aminoacyl-tRNA synthetase–tRNA pairs orthogonal to the host translation system. In the present study, we engineered Escherichia coli cells with a translation system orthogonal to the E. coli tyrosyl-tRNA synthetase (TyrRS)–tRNATyr pair, to use E. coli TyrRS variants for non-natural amino acids in the cells without interfering with tyrosine incorporation. We showed that the E. coli TyrRS–tRNATyr pair can be functionally replaced by the Methanocaldococcus jannaschii and Saccharomyces cerevisiae tyrosine pairs, which do not cross-react with E. coli TyrRS or tRNATyr. The endogenous TyrRS and tRNATyr genes were then removed from the chromosome of the E. coli cells expressing the archaeal TyrRS–tRNATyr pair. In this engineered strain, 3-iodo-l-tyrosine and 3-azido-l-tyrosine were each successfully encoded with the amber codon, using the E. coli amber suppressor tRNATyr and a TyrRS variant, which was previously developed for 3-iodo-l-tyrosine and was also found to recognize 3-azido-l-tyrosine. The structural basis for the 3-azido-l-tyrosine recognition was revealed by X-ray crystallography. The present engineering allows E. coli TyrRS variants for non-natural amino acids to be developed in E. coli, for use in both eukaryotic and bacterial cells for genetic code expansion.

Collaboration


Dive into the Kensaku Sakamoto's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Hiroshi Someya

Tokyo Institute of Technology

View shared research outputs
Researchain Logo
Decentralizing Knowledge