Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Kensuke Otsuka is active.

Publication


Featured researches published by Kensuke Otsuka.


Radiation Research | 2006

Activation of Antioxidative Enzymes Induced by Low-Dose-Rate Whole‐Body γ Irradiation: Adaptive Response in Terms of Initial DNA Damage

Kensuke Otsuka; Takao Koana; Hiroshi Tauchi; Kazuo Sakai

Abstract Otsuka, K., Koana, T., Tauchi, H. and Sakai, K. Activation of Antioxidative Enzymes Induced by Low-Dose-Rate Whole-Body γ Irradiation: Adaptive Response in Terms of Initial DNA Damage. Radiat. Res. 166, 474–478 (2006). An adaptive response induced by long-term low-dose-rate irradiation in mice was evaluated in terms of the amount of DNA damage in the spleen analyzed by a comet assay. C57BL/ 6N female mice were irradiated with 0.5 Gy of 137Cs γ rays at 1.2 mGy/h; thereafter, a challenge dose (0.4, 0.8 or 1.6 Gy) at a high dose rate was given. Less DNA damage was observed in the spleen cells of preirradiated mice than in those of mice that received the challenge dose only; an adaptive response in terms of DNA damage was induced by long-term low-dose-rate irradiation in mice. The gene expression of catalase and Mn-SOD was significantly increased in the spleen after 23 days of the low-dose-rate radiation (0.5 Gy). In addition, the enzymatic activity of catalase corresponded to the gene expression level; the increase in the activity was observed at day 23 (0.5 Gy). These results suggested that an enhancement of the antioxidative capacities played an important role in the reduction of initial DNA damage by low-dose-rate radiation.


International Journal of Cancer | 2009

Ascochlorin activates p53 in a manner distinct from DNA damaging agents

Ji-Hak Jeong; Hiroo Nakajima; Chiharu Furukawa; Keiko Taki; Kensuke Otsuka; Masanori Tomita; In-Seon Lee; Cheorl-Ho Kim; Hyeun-Wook Chang; Kwan-Sik Min; Kwang Kyun Park; Kwan-Kyu Park; Young-Chae Chang

Ascochlorin, a prenylphenol antitumor antibiotic, profoundly increases the expression of endogenous p53 by increasing protein stability in the human osteosarcoma cells and human colon cancer cells. Ascochlorin also increases DNA binding activity to the p53 consensus sequence in nuclear extract and enhances transcription of p53 downstream targets. Ascochlorin specifically induces p53 phosphorylation at ser 392 without affecting ser 15 or 20, whereas DNA damaging agents typically phosphorylate these serines. Moreover, ascochlorin does not induce phosphorylation of ATM and CHK1, an established substrate of ATR that is activated by genotoxins, nor does it increase DNA strand break, as confirmed by comet assay. The structure‐activity relationship suggests that p53 activation by ascochlorin is related to inhibition of mitochondrial respiration, which is further supported by the observation that respiratory inhibitors activate p53 in a manner similar to ascochlorin. These results suggest that ascochlorin, through the inhibition of mitochondrial respiration, activates p53 through a mechanism distinct from genotoxins.


Radiation Research | 2008

Rapid Myeloid Recovery as a Possible Mechanism of Whole-Body Radioadaptive Response

Kensuke Otsuka; Takao Koana; Masanori Tomita; Hiromitsu Ogata; Hiroshi Tauchi

Abstract Otsuka, K., Koana, T., Tomita, M., Ogata, H. and Tauchi, H. Rapid Myeloid Recovery as a Possible Mechanism of Whole-Body Radioadaptive Response. Radiat. Res. 170, 307– 315 (2008). We investigated the mechanism underlying the radioadaptive response that rescues mice from hematopoietic failure. C57BL/6 mice were irradiated with low-dose acute X rays (0.5 Gy) for priming 2 weeks prior to a high-dose (6 Gy) challenge irradiation. Bone marrow cells, erythrocytes and platelets in low-dose-preirradiated mice showed earlier recovery after the challenge irradiation than those in mice subjected only to the challenge irradiation. This suggests that hematopoiesis is enhanced after a challenge irradiation in preirradiated mice. The rapid recovery of bone marrow cells after the challenge irradiation was consistent with the proliferation of hematopoietic progenitors expressing the cell surface markers Lin−, Sca-1− and c-Kit+ in low-dose-preirradiated mice. A subpopulation of myeloid (Mac-1+/Gr-1+) cells, which were descendants of Lin−, Sca-1− and c-Kit+ cells, rapidly recovered in the bone marrow of low-dose-preirradiated mice, whereas the number of B-lymphoid (CD19+/B220+) cells did not show a statistically significant increase. Plasma cytokine profiles were analyzed using antibody arrays, and results indicated that the concentrations of several growth factors for myelopoiesis after the challenge irradiation were considerably increased by low-dose preirradiation. The rapid recovery of erythrocytes and platelets but not leukocytes was observed in the peripheral blood of preirradiated mice, suggesting that low-dose preirradiation triggered the differentiation to myelopoiesis. Thus the adaptive response induced by low-dose preirradiation in terms of the recovery kinetics of the number of hematopoietic cells may be due to the rapid recovery of the number of myeloid cells after high-dose irradiation.


Radiation Research | 2013

Ionizing Radiation Leads to the Replacement and de novo Production of Colonic Lgr5+ Stem Cells

Kensuke Otsuka; Nobuyuki Hamada; Hideki Matsumoto; Yuko Hoshi; Toshiyasu Iwasaki

Tissue stem cells have self-renewal capability throughout their whole life, which is high enough to lead to the accumulation of DNA damage in a stem cell pool. Whether radiation-induced damage accumulates in tissue stem cells remains unknown, but could be investigated if the fate of tissue stem cells could be followed after irradiation. To realize this goal, we used an Lgr5-dependent lineage tracing system that allows the conditional in vivo labeling of Lgr5+ intestinal stem cells and their progeny. We found that radiation induced loss of Lgr5+ stem cells in the colon, but not in the duodenum. Interestingly, the loss of colonic Lgr5+ cells was compensated by de novo production of Lgr5+ cells, which increased after irradiation. These findings show that ionizing radiation effectively stimulates the turnover of colonic Lgr5+ stem cells, implying that radiation-induced damage does not accumulate in the colonic Lgr5+ stem cells by this mechanism.


Journal of Radiation Research | 2014

A novel in vitro survival assay of small intestinal stem cells after exposure to ionizing radiation

Motohiro Yamauchi; Kensuke Otsuka; Hisayoshi Kondo; Nobuyuki Hamada; Masanori Tomita; Masayuki Takahashi; Satoshi Nakasono; Toshiyasu Iwasaki; Kazuo Yoshida

The microcolony assay developed by Withers and Elkind has been a gold standard to assess the surviving fraction of small intestinal stem cells after exposure to high (≥8 Gy) doses of ionizing radiation (IR), but is not applicable in cases of exposure to lower doses. Here, we developed a novel in vitro assay that enables assessment of the surviving fraction of small intestinal stem cells after exposure to lower IR doses. The assay includes in vitro culture of small intestinal stem cells, which allows the stem cells to develop into epithelial organoids containing all four differentiated cell types of the small intestine. We used Lgr5-EGFP-IRES-CreERT2/ROSA26-tdTomato mice to identify Lgr5+ stem cells and their progeny. Enzymatically dissociated single crypt cells from the duodenum and jejunum of mice were irradiated with 7.25, 29, 101, 304, 1000, 2000 and 4000 mGy of X-rays immediately after plating, and the number of organoids was counted on Day 12. Organoid-forming efficiency of irradiated cells relative to that of unirradiated controls was defined as the surviving fraction of stem cells. We observed a significant decrease in the surviving fraction of stem cells at ≥1000 mGy. Moreover, fluorescence-activated cell sorting analyses and passage of the organoids revealed that proliferation of stem cells surviving IR is significantly potentiated. Together, the present study demonstrates that the in vitro assay is useful for quantitatively assessing the surviving fraction of small intestinal stem cells after exposure to lower doses of IR as compared with previous examinations using the microcolony assay.


Carcinogenesis | 2015

Bcl11b SWI/SNF-complex subunit modulates intestinal adenoma and regeneration after γ-irradiation through Wnt/β-catenin pathway.

Akira Sakamaki; Yoshinori Katsuragi; Kensuke Otsuka; Masanori Tomita; Miki Obata; Tomohiro Iwasaki; Manabu Abe; Toshihiro Sato; Masako Ochiai; Yoshiyuki Sakuraba; Yutaka Aoyagi; Yoichi Gondo; Kenji Sakimura; Hitoshi Nakagama; Yukio Mishima; Ryo Kominami

SWI/SNF chromatin remodeling complexes constitute a highly related family of multi-subunit complexes to modulate transcription, and SWI/SNF subunit genes are collectively mutated in 20% of all human cancers. Bcl11b is a SWI/SNF subunit and acts as a haploinsufficient tumor suppressor in leukemia/lymphomas. Here, we show expression of Bcl11b in intestinal crypt cells and promotion of intestinal tumorigenesis by Bcl11b attenuation in Apc (min/+) mice. Of importance, mutations or allelic loss of BCL11B was detected in one-third of human colon cancers. We also show that attenuated Bcl11b activity in the crypt base columnar (CBC) cells expressing the Lgr5 stem cell marker enhanced regeneration of intestinal epithelial cells after the radiation-induced injury. Interestingly, BCL11B introduction in human cell lines downregulated transcription of β-catenin target genes, whereas Bcl11b attenuation in Lgr5(+) CBCs increased expression of β-catenin targets including c-Myc and cyclin D1. Together, our results argue that Bcl11b impairment promotes tumor development in mouse and human intestine at least in part through deregulation of β-catenin pathway.


Life sciences in space research | 2015

Nitric oxide-mediated bystander signal transduction induced by heavy-ion microbeam irradiation

Masanori Tomita; Hideki Matsumoto; Tomoo Funayama; Yuichiro Yokota; Kensuke Otsuka; Munetoshi Maeda; Yasuhiko Kobayashi

In general, a radiation-induced bystander response is known to be a cellular response induced in non-irradiated cells after receiving bystander signaling factors released from directly irradiated cells within a cell population. Bystander responses induced by high-linear energy transfer (LET) heavy ions at low fluence are an important health problem for astronauts in space. Bystander responses are mediated via physical cell-cell contact, such as gap-junction intercellular communication (GJIC) and/or diffusive factors released into the medium in cell culture conditions. Nitric oxide (NO) is a well-known major initiator/mediator of intercellular signaling within culture medium during bystander responses. In this study, we investigated the NO-mediated bystander signal transduction induced by high-LET argon (Ar)-ion microbeam irradiation of normal human fibroblasts. Foci formation by DNA double-strand break repair proteins was induced in non-irradiated cells, which were co-cultured with those irradiated by high-LET Ar-ion microbeams in the same culture plate. Foci formation was suppressed significantly by pretreatment with an NO scavenger. Furthermore, NO-mediated reproductive cell death was also induced in bystander cells. Phosphorylation of NF-κB and Akt were induced during NO-mediated bystander signaling in the irradiated and bystander cells. However, the activation of these proteins depended on the incubation time after irradiation. The accumulation of cyclooxygenase-2 (COX-2), a downstream target of NO and NF-κB, was observed in the bystander cells 6 h after irradiation but not in the directly irradiated cells. Our findings suggest that Akt- and NF-κB-dependent signaling pathways involving COX-2 play important roles in NO-mediated high-LET heavy-ion-induced bystander responses. In addition, COX-2 may be used as a molecular marker of high-LET heavy-ion-induced bystander cells to distinguish them from directly irradiated cells, although this may depend on the time after irradiation.


PLOS ONE | 2012

Assessment of Benzene-Induced Hematotoxicity Using a Human-Like Hematopoietic Lineage in NOD/Shi-scid/IL-2Rγnull Mice

Masayuki Takahashi; Noriyuki Tsujimura; Tomoko Yoshino; Masahito Hosokawa; Kensuke Otsuka; Tadashi Matsunaga; Satoshi Nakasono

Despite recent advancements, it is still difficult to evaluate in vivo responses to toxicants in humans. Development of a system that can mimic the in vivo responses of human cells will enable more accurate health risk assessments. A surrogate human hematopoietic lineage can be established in NOD/Shi-scid/IL-2Rγnull (NOG) mice by transplanting human hematopoietic stem/progenitor cells (Hu-NOG mice). Here, we first evaluated the toxic response of human-like hematopoietic lineage in NOG mice to a representative toxic agent, benzene. Flow cytometric analysis showed that benzene caused a significant decrease in the number of human hematopoietic stem/progenitor cells in the bone marrow and the number of human leukocytes in the peripheral blood and hematopoietic organs. Next, we established chimeric mice by transplanting C57BL/6 mouse-derived bone marrow cells into NOG mice (Mo-NOG mice). A comparison of the degree of benzene-induced hematotoxicity in donor-derived hematopoietic lineage cells within Mo-NOG mice indicated that the toxic response of Hu-NOG mice reflected interspecies differences in susceptibilities to benzene. Responses to the toxic effects of benzene were greater in lymphoid cells than in myeloid cells in Mo-NOG and Hu-NOG mice. These findings suggested that Hu-NOG mice may be a powerful in vivo tool for assessing hematotoxicity in humans, while accounting for interspecies differences.


Journal of Bioscience and Bioengineering | 2012

Comprehensive evaluation of leukocyte lineage derived from human hematopoietic cells in humanized mice

Masayuki Takahashi; Noriyuki Tsujimura; Kensuke Otsuka; Tomoko Yoshino; Tetsushi Mori; Tadashi Matsunaga; Satoshi Nakasono

Recently, humanized animals whereby a part of the animal is biologically engineered using human genes or cells have been utilized to overcome interspecific differences. Herein, we analyzed the detail of the differentiation states of various human leukocyte subpopulations in humanized mouse and evaluated comprehensively the similarity of the leukocyte lineage between humanized mice and humans. Humanized mice were established by transplanting human CD34(+) cord blood cells into irradiated severely immunodeficient NOD/Shi-scid/IL2Rγ(null) (NOG) mice, and the phenotypes of human cells contained in bone marrow, thymus, spleen and peripheral blood from the mice were analyzed at monthly intervals until 4 months after cell transplantation. The analysis revealed that transplanted human hematopoietic stem cells via the caudal vein homed and engrafted themselves successfully at the mouse bone marrow. Subsequently, the differentiated leukocytes migrated to the various tissues. Almost all of the leukocytes within the thymus were human cells. Furthermore, analysis of the differentiation states of human leukocytes in various tissues and organs indicated that it is highly likely that the human-like leukocyte lineage can be developed in mice.


Journal of Radiation Research | 2015

Effects of dose rates on radiation-induced replenishment of intestinal stem cells determined by Lgr5 lineage tracing

Kensuke Otsuka; Toshiyasu Iwasaki

An understanding of the dynamics of intestinal Lgr5+ stem cells is important for elucidating the mechanism of colonic cancer development. We previously established a method for evaluating Lgr5+ stem cells by tamoxifen-dependent Lgr5-lineage tracing and showed that high-dose-rate radiation stimulated replenishment of colonic stem cells. In this study, we evaluated the effects of low-dose-rate radiation on stem cell maintenance. Tamoxifen (4OHT)-injected Lgr5-EGFP-IRES-CreERT2 × ROSA-LSL-LacZ mice were used, LacZ-labeled colonic crypts were enumerated, and the loss of LacZ+ crypts under low-dose-rate radiation was estimated. After 4OHT treatment, the number of LacZ-labeled Lgr5+ stem cells was higher in the colon of infant mice than in adult mice. The percentage of LacZ-labeled crypts in infant mice rapidly decreased after 4OHT treatment. However, the percentage of labeled crypts plateaued at ∼2% at 4 weeks post-treatment and remained unchanged for up to 7 months. Thus, it will be advantageous to evaluate the long-term effects of low-dose-rate radiation. Next, we determined the percentages of LacZ-labeled crypts irradiated with 1 Gy administered at different dose rates. As reported in our previous study, mice exposed to high-dose-rate radiation (30 Gy/h) showed a marked replenishment (P = 0.04). However, mice exposed to low-dose-rate radiation (0.003 Gy/h) did not exhibit accelerated stem-cell replenishment (P = 0.47). These findings suggest the percentage of labeled crypts can serve as a useful indicator of the effects of dose rate on the stem cell pool.

Collaboration


Dive into the Kensuke Otsuka's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Toshiyasu Iwasaki

Central Research Institute of Electric Power Industry

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Munetoshi Maeda

Central Research Institute of Electric Power Industry

View shared research outputs
Top Co-Authors

Avatar

Nobuyuki Hamada

Central Research Institute of Electric Power Industry

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Takao Koana

Railway Technical Research Institute

View shared research outputs
Top Co-Authors

Avatar

Yuki Fujimichi

Central Research Institute of Electric Power Industry

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge