Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Kensuke Yamauchi is active.

Publication


Featured researches published by Kensuke Yamauchi.


Cancer Research | 2006

Development of Real-time Subcellular Dynamic Multicolor Imaging of Cancer-Cell Trafficking in Live Mice with a Variable-Magnification Whole-Mouse Imaging System

Kensuke Yamauchi; Meng Yang; Ping Jiang; Mingxu Xu; Norio Yamamoto; Hiroyuki Tsuchiya; Katsuro Tomita; Abdool R. Moossa; Michael Bouvet; Robert M. Hoffman

With the use of dual-color fluorescent cells and a highly sensitive whole-mouse imaging system with both macro-optics and micro-optics, we report here the development of subcellular real-time imaging of cancer cell trafficking in live mice. To observe cytoplasmic and nuclear dynamics in the living mouse, tumor cells were labeled in the nucleus with green fluorescent protein and with red fluorescent protein in the cytoplasm. Dual-color cancer cells were injected by a vascular route in an abdominal skin flap in nude mice. The mice were imaged with an Olympus OV100 whole-mouse imaging system with a sensitive CCD camera and five objective lenses, parcentered and parfocal, enabling imaging from macrocellular to subcellular. We observed the nuclear and cytoplasmic behavior of cancer cells in real time in blood vessels as they moved by various means or adhered to the vessel surface in the abdominal skin flap. During extravasation, real-time dual-color imaging showed that cytoplasmic processes of the cancer cells exited the vessels first, with nuclei following along the cytoplasmic projections. Both cytoplasm and nuclei underwent deformation during extravasation. Different cancer cell lines seemed to strongly vary in their ability to extravasate. With the dual-color cancer cells and the highly sensitive whole-mouse imaging system described here, the subcellular dynamics of cancer metastasis can now be observed in live mice in real time. This imaging technology will enable further understanding of the critical steps of metastasis and provide visible targets for antimetastasis drug development.


Cancer Research | 2004

Cellular Dynamics Visualized in Live Cells in Vitro and in Vivo by Differential Dual-Color Nuclear-Cytoplasmic Fluorescent-Protein Expression

Norio Yamamoto; Ping Jiang; Meng Yang; Mingxu Xu; Kensuke Yamauchi; Hiroyuki Tsuchiya; Katsuro Tomita; Geoffrey M. Wahl; Abdool R. Moossa; Robert M. Hoffman

We report here the genetic engineering of dual-color fluorescent cells with one color in the nucleus and the other in the cytoplasm that enables real-time nuclear-cytoplasmic dynamics to be visualized in living cells in vivo as well as in vitro. To obtain the dual-color cells, red fluorescent protein (RFP) was expressed in the cytoplasm of HT-1080 human fibrosarcoma cells, and green fluorescent protein (GFP) linked to histone H2B was expressed in the nucleus. Nuclear GFP expression enabled visualization of nuclear dynamics, whereas simultaneous cytoplasmic RFP expression enabled visualization of nuclear cytoplasmic ratios as well as simultaneous cell and nuclear shape changes. Thus, total cellular dynamics can be visualized in the living dual-color cells in real time. The parental HT-1080 and the derived dual-color clones had similar cell proliferation rates, suggesting that expression of GFP and/or RFP does not affect cell cycle progression. The cell cycle position of individual living cells was readily visualized by the nuclear-cytoplasmic ratio and nuclear morphology. Real-time induction of apoptosis was observed by nuclear size changes and progressive nuclear fragmentation. Mitotic cells were visualized by whole-body imaging after injection in the mouse ear. Common carotid artery injection of dual-color cells and a reversible skin flap enabled the external visualization of the dual-color cells in microvessels in the mouse brain where extreme elongation of the cell body as well as the nucleus occurred. Dual-color cells in various positions of the cell cycle were visualized in excised mouse lungs after tail-vein injection of the dual-color cells. In the lung, the dual-color cells were observed frequently juxtaposing their nuclei, suggesting a potential novel form of cell-cell communication. The dual-color cells thus are a useful tool for visualizing living-cell dynamics in vivo as well as in vitro. Drugs that could specifically perturb these processes can now be readily screened in real time in vivo.


Cancer Research | 2005

Real-time in vivo dual-color imaging of intracapillary cancer cell and nucleus deformation and migration.

Kensuke Yamauchi; Meng Yang; Ping Jiang; Norio Yamamoto; Mingxu Xu; Yasuyuki Amoh; Kazuhiko Tsuji; Michael Bouvet; Hiroyuki Tsuchiya; Katsuro Tomita; A. R. Moossa; Robert M. Hoffman

The mechanism of cancer cell deformation and migration in narrow vessels is incompletely understood. In order to visualize the cytoplasmic and nuclear dynamics of cells migrating in capillaries, red fluorescent protein was expressed in the cytoplasm, and green fluorescent protein, linked to histone H2B, was expressed in the nucleus of cancer cells. Immediately after the cells were injected in the heart of nude mice, a skin flap on the abdomen was made. With a color CCD camera, we could observe highly elongated cancer cells and nuclei in capillaries in the skin flap in living mice. The migration velocities of the cancer cells in the capillaries were measured by capturing images of the dual-color fluorescent cells over time. The cells and nuclei in the capillaries elongated to fit the width of these vessels. The average length of the major axis of the cancer cells in the capillaries increased to approximately four times their normal length. The nuclei increased their length 1.6 times in the capillaries. Cancer cells in capillaries over 8 microm in diameter could migrate up to 48.3 microm/hour. The data suggests that the minimum diameter of capillaries where cancer cells are able to migrate is approximately 8 microm. The use of the dual-color cancer cells differentially labeled in the cytoplasm and nucleus and associated fluorescent imaging provide a powerful tool to understand the mechanism of cancer cell migration and deformation in small vessels.


Journal of Cellular Biochemistry | 2009

Cancer metastasis directly eradicated by targeted therapy with a modified Salmonella typhimurium.

Katsuhiro Hayashi; Ming Zhao; Kensuke Yamauchi; Norio Yamamoto; Hiroyuki Tsuchiya; Katsuro Tomita; Robert M. Hoffman

Cancer metastasis is the life‐threatening aspect of cancer and is usually resistant to standard treatment. We report here a targeted therapy strategy for cancer metastasis using a genetically‐modified strain of Salmonella typhimurium. The genetically‐modified strain of S. typhimurium is auxotrophic for the amino acids arginine and leucine. These mutations preclude growth in normal tissue but do not reduce bacterial virulence in cancer cells. The tumor‐targeting strain of S. typhimurium, termed A1‐R, and expressing green fluorescent protein (GFP), was administered to both axillary lymph and popliteal lymph node metastasis of human pancreatic cancer and fibrosarcoma, respectively, as well as lung metastasis of the fibrosarcoma in nude mice. The bacteria were delivered via a lymphatic channel to target the lymph node metastases and systemically via the tail vein to target the lung metastasis. The cancer cells expressed red fluorescent protein (RFP) in the cytoplasm and GFP in the nucleus linked to histone H2B, enabling color‐coded real‐time imaging of the bacteria targeting the metastatic tumors. After 7–21 days of treatment, the metastases were eradicated without the need of chemotherapy or any other treatment. No adverse effects were observed. This new strategy demonstrates the clinical potential of targeting and curing cancer metastasis with engineered bacteria without the need of toxic chemotherapy. J. Cell. Biochem. 106: 992–998, 2009.


Cell Cycle | 2009

Systemic targeting of primary bone tumor and lung metastasis of high-grade osteosarcoma in nude mice with a tumor-selective strain of Salmonella typhimurium

Katsuhiro Hayashi; Ming Zhao; Kensuke Yamauchi; Norio Yamamoto; Hiroyuki Tsuchiya; Katsuro Tomita; Hiroyuki Kishimoto; Michael Bouvet; Robert M. Hoffman

We report here a new targeting strategy for primary bone tumor and lung metastasis with a modified auxotrophic strain of Salmonella typhimurium. We have previously developed the genetically-modified strain of S. typhimurium, selected for tumor targeting and therapy in vivo. Normal tissue is cleared of these bacteria even in immunodeficient athymic mice with no apparent side effects. In this study, the tumor-targeting strain of S. typhimurium, termed A1-R, was administered i.v. to nude mice which have primary bone tumor and lung metastasis. Primary bone tumor was obtained by orthotopic intratibial injection of 5 x 105 143B-RFP (red fluorescent protein) human osteosarcoma cells. One group of mice was treated with A1-R expressing GFP (green fluorescent protein) and another group was used a as control. A1-R (5 x 107 colony-forming units) was injected in the tail vein three times on weekly basis. On day 28, lung samples were excised and observed with the Olympus OV100 Small Animal Imaging System. The size of the primary tumor and RFP intensity of lung metastasis were measured. Primary bone tumor size (fluorescence area [mm2]) was 232 ± 70 in the untreated group and 95 ± 23 in the treated group (P


Cancer Research | 2007

Real-time Imaging of Tumor-Cell Shedding and Trafficking in Lymphatic Channels

Katsuhiro Hayashi; Ping Jiang; Kensuke Yamauchi; Norio Yamamoto; Hiroyuki Tsuchiya; Katsuro Tomita; A. R. Moossa; Michael Bouvet; Robert M. Hoffman

In the present report, we show real-time imaging of cancer cell trafficking in lymphatic vessels. Cancer cells labeled with both green fluorescent protein (GFP) in the nucleus and red fluorescent protein (RFP) in the cytoplasm or with GFP only or RFP only were injected into the inguinal lymph node of nude mice. The labeled cancer cells trafficked through lymphatic vessels where they were imaged via a skin flap in real time at the cellular level until they entered the axillary lymph node. The bright fluorescence of the cancer cells and the real-time microscopic imaging capability of the Olympus OV100 small-animal imaging system enabled imaging of the trafficking cancer cells in the lymphatics. Using this imaging strategy, two different cancer cell lines, one expressing GFP and the other expressing RFP, were simultaneously injected in the inguinal lymph node. Fluorescence imaging readily distinguished the two color-coded cell lines and their different abilities to survive in the lymphatic system. Using this imaging technology, we also investigated the role of pressure on tumor-cell shedding into lymphatic vessels. Pressure was generated by placing 25- and 250-g weights for 10 s on the bottom surface of a tumor-bearing footpad. Tumor cell fragments, single cells, and emboli shed from the footpad tumor were easily distinguished with the labeled cells and OV100 imaging system. Increasing pressure on the tumor increased the numbers of shed cells, fragments, and emboli. Pressure also deformed the shed emboli, increasing their maximum major axis. Imaging lymphatic trafficking of cancer cells can reveal critical steps of lymph node metastasis.


Cytometry Part A | 2010

Advances in Cellular, Subcellular, and Nanoscale Imaging In Vitro and In Vivo

Johannes T. Wessels; Kensuke Yamauchi; Robert M. Hoffman; Fred S. Wouters

This review focuses on technical advances in fluorescence microscopy techniques including laser scanning techniques, fluorescence‐resonance energy transfer (FRET) microscopy, fluorescence lifetime imaging (FLIM), stimulated emission depletion (STED)‐based super‐resolution microscopy, scanning confocal endomicroscopes, thin‐sheet laser imaging microscopy (TSLIM), and tomographic techniques such as early photon tomography (EPT) as well as on clinical laser‐based endoscopic and microscopic techniques. We will also discuss the new developments in the field of fluorescent dyes and fluorescent genetic reporters that enable new possibilities in high‐resolution and molecular imaging both in in vitro and in vivo. Small animal and tissue imaging benefit from the development of new fluorescent proteins, dyes, and sensing constructs that operate in the far red and near‐infrared spectrum.


Cancer Research | 2006

Dual-Color Imaging of Nuclear-Cytoplasmic Dynamics, Viability, and Proliferation of Cancer Cells in the Portal Vein Area

Kazuhiko Tsuji; Kensuke Yamauchi; Meng Yang; Ping Jiang; Michael Bouvet; Hitoshi Endo; Yoshikatsu Kanai; Koji Yamashita; Abdool R. Moossa; Robert M. Hoffman

We used dual-color in vivo cellular imaging to visualize trafficking, nuclear-cytoplasmic dynamics, and the viability of cancer cells after their injection into the portal vein of mice. For these studies, we used dual-color fluorescent cancer cells that express green fluorescent protein (GFP) linked to histone H2B in the nucleus and retroviral red fluorescent protein (RFP) in the cytoplasm. Human HCT-116-GFP-RFP colon cancer and mouse mammary tumor (MMT) cells were HCT-116-GFP-RFP in the portal vein of nude mice. The cells were observed intravitally in the liver at the single-cell level using the Olympus OV100 whole-mouse imaging system. Most HCT-116-GFP-RFP cells remained in sinusoids near peripheral portal veins. Only a small fraction of the cancer cells invaded the lobular area. Extensive clasmocytosis (destruction of the cytoplasm) of the HCT-116-GFP-RFP cells occurred within 6 hours. The number of apoptotic cells rapidly increased within the portal vein within 12 hours of injection. Apoptosis was readily visualized in the dual-color cells by their altered nuclear morphology. The data suggest rapid death of HCT-116-GFP-RFP cells in the portal vein. In contrast, dual-color MMT-GFP-RFP cells injected into the portal vein mostly survived in the liver of nude mice 24 hours after injection. Many surviving MMT-GFP-RFP cells showed invasive figures with cytoplasmic protrusions. The cells grew aggressively and formed colonies in the liver. However, when the host mice were pretreated with cyclophosphamide, the HCT-116-GFP-RFP cells also survived and formed colonies in the liver after portal vein injection. These results suggest that a cyclophosphamide-sensitive host cellular system attacked the HCT-116-GFP-RFP cells but could not effectively kill the MMT-GFP-RFP cells.


Journal of Cellular Biochemistry | 2009

Real‐time imaging of single cancer‐cell dynamics of lung metastasis

Hiroaki Kimura; Katsuhiro Hayashi; Kensuke Yamauchi; Norio Yamamoto; Hiroyuki Tsuchiya; Katsuro Tomita; Hiroyuki Kishimoto; Michael Bouvet; Robert M. Hoffman

We have developed a new in vivo mouse model to image single cancer‐cell dynamics of metastasis to the lung in real‐time. Regulating airflow volume with a novel endotracheal intubation method enabled controlling lung expansion adequate for imaging of the exposed lung surface. Cancer cells expressing green fluorescent protein (GFP) in the nucleus and red fluorescent protein (RFP) in the cytoplasm were injected in the tail vein of the mouse. The right chest wall was then opened in order to image metastases on the lung surface directly. After each observation, the chest wall was sutured and the air was suctioned in order to re‐inflate the lung, in order to keep the mice alive. Observations have been carried out for up to 8 h per session and repeated up to six times per mouse thus far. The seeding and arresting of single cancer cells on the lung, accumulation of cancer‐cell emboli, cancer‐cell viability, and metastatic colony formation were imaged in real‐time. This new technology makes it possible to observe real‐time monitoring of cancer‐cell dynamics of metastasis in the lung and to identify potential metastatic stem cells. J. Cell. Biochem. 109: 58–64, 2010.


Cell Cycle | 2006

Tumor Cells Genetically Labeled with GFP in the Nucleus and RFP in the Cytoplasm for Imaging Cellular Dynamics

Ping Jiang; Kensuke Yamauchi; Meng Yang; Kazuhiko Tsuji; Mingxu Xu; Anirban Maitra; Michael Bouvet; Robert M. Hoffman

Dual-color fluorescent cells with one color fluorescent protein in the nucleus and another color fluorescent protein in the cytoplasm were genetically engineered. The dual-color cancer cells enable real-time nuclear-cytoplasmic dynamics to be visualized in living cells in vivo as well as in vitro. To obtain the dual-color cells, red fluorescent protein (RFP) was expressed in the cytoplasm of a series of human and rodent cancer cells, and green fluorescent protein (GFP) linked to histone H2B was expressed in the nucleus. Nuclear GFP expression enabled visualization of nuclear dynamics, whereas simultaneous cytoplasmic RFP expression enabled visualization of nuclear-cytoplasmic ratios as well as simultaneous cell and nuclear shape changes. Using the Olympus OV100 Whole-Mouse Imaging System, total sub-cellular dynamics can be visualized in the living dual-color cells in real time in the live mouse after cell injection. Highly elongated cancer cells and nuclei in narrow capillaries were visualized where both the nuclei and cytoplasm deform. Both cytoplasm and nuclei were visualized to undergo extreme deformation during extravasation with cytoplasmic processing exiting vessels first and nuclei following along these processes. The dual-color cells described here thus enable the sub-cellular dynamics of cancer cell trafficking to be imaged in the living animal.

Collaboration


Dive into the Kensuke Yamauchi's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Michael Bouvet

University of California

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Ping Jiang

University of California

View shared research outputs
Top Co-Authors

Avatar

Meng Yang

University of California

View shared research outputs
Top Co-Authors

Avatar

Mingxu Xu

University of Texas Southwestern Medical Center

View shared research outputs
Top Co-Authors

Avatar

A. R. Moossa

University of California

View shared research outputs
Researchain Logo
Decentralizing Knowledge