Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Kent Kirshenbaum is active.

Publication


Featured researches published by Kent Kirshenbaum.


Current Opinion in Structural Biology | 1999

Designing polymers that mimic biomolecules

Kent Kirshenbaum; Ronald N. Zuckermann; Ken A. Dill

A new field is emerging. Chemists are beginning to synthesize polymers with properties that are similar to those of proteins and RNA. Recent studies have identified oligomer backbones that form stable secondary structures. It is now possible to assemble specific sequences of diverse monomer sets into chain lengths that are nearly sufficient for tertiary structure formation. Such molecules will teach us how natural biopolymers fold; they will also enable us to design synthetic heteropolymers with novel structures and desirable functions.


Current Opinion in Chemical Biology | 2008

Peptoid architectures: elaboration, actuation, and application.

Barney Yoo; Kent Kirshenbaum

Peptoids are peptidomimetic oligomers composed of N-substituted glycine units. Their convenient synthesis enables strict control over the sequence of highly diverse monomers and is capable of generating extensive compound libraries. Recent studies are beginning to explore the relationship between peptoid sequence, structure and function. We describe new approaches to direct the conformation of the peptoid backbone, leading to secondary structures such as helices, loops, and turns. These advances are enabling the discovery of bioactive peptoids and will establish modules for the design and assembly of protein mimetics.


Proceedings of the National Academy of Sciences of the United States of America | 2009

Folded biomimetic oligomers for enantioselective catalysis

Galia Maayan; Michael D. Ward; Kent Kirshenbaum

Many naturally occurring biopolymers (i.e., proteins, RNA, DNA) owe their unique properties to their well-defined three-dimensional structures. These attributes have inspired the design and synthesis of folded architectures with functions ranging from molecular recognition to asymmetric catalysis. Among these are synthetic oligomeric peptide (“foldamer”) mimics, which can display conformational ordering at short chain lengths. Foldamers, however, have not been explored as platforms for asymmetric catalysis. This report describes a library of synthetic helical “peptoid” oligomers that enable enantioselective transformations at an embedded achiral catalytic center, as illustrated by the oxidative kinetic resolution of 1-phenylethanol. In an investigation aimed at elucidating key structure–function relationships, we have discovered that the enantioselectivity of the catalytic peptoids depends on the handedness of the asymmetric environment derived from the helical scaffold, the position of the catalytic center along the peptoid backbone, and the degree of conformational ordering of the peptoid scaffold. The transfer of chiral information from a folded scaffold can enable the use of a diverse assortment of embedded achiral catalytic centers, promising a generation of synthetic foldamer catalysts for enantioselective transformations that can be performed under a broad range of reaction environments.


Folding and Design | 1997

Chiral N-substituted glycines can form stable helical conformations

Philippe Armand; Kent Kirshenbaum; Alexis Falicov; Roland L. Dunbrack; Ken A. Dill; Ronald N. Zuckermann; Fred E. Cohen

BACKGROUND Short sequence-specific heteropolymers of N-substituted glycines (peptoids) have emerged as promising tools for drug discovery. Recent work on medium-length peptoids containing chiral centers in their sidechains has demonstrated the existence of stable chiral conformations in solution. In this report, we explore the conformational properties of these N alpha chiral peptoids by molecular mechanics calculations and we propose a model for the solution conformation of an octamer of (S)-N-(1-phenylethyl)glycine. RESULTS Molecular mechanics calculations indicate that the presence of N-substituents in which the N alpha carbons are chiral centers has a dramatic impact on the available backbone conformations. These results are supported by semi-empirical quantum mechanical calculations and coincide qualitatively with simple steric considerations. They suggest that an octamer of (S)-N-(1-phenylethyl)glycine should form a right-handed helix with cis amide bonds, similar to the polyproline type I helix. This model is consistent with circular dichorism studies of these molecules. CONCLUSIONS Peptoid oligomers containing chiral centers in their sidechains present a new structural paradigm that has promising implications for the design of stably folded molecules. We expect that their novel structure may provide a scaffold to create heteropolymers with useful functionality.


Chemistry: A European Journal | 2010

Peptoid Macrocycles: Making the Rounds with Peptidomimetic Oligomers

Barney Yoo; Sung Bin Y. Shin; Mia Lace Huang; Kent Kirshenbaum

Macrocyclic constraints are often employed to rigidify the conformation of flexible oligomeric systems. This approach has recently been used to organize the structure of peptoid oligomers, which are peptidomimetics composed of chemically diverse N-substituted glycine monomer units. In this review, we describe advances in the synthesis and characterization of cyclic peptoids. We evaluate how the installation of covalent constraints between the oligomer termini or side chains has been effective in defining peptoid conformations. We also discuss the potential applications for this promising family of macrocyclic peptidomimetics.


Journal of Organic Chemistry | 2009

Peptide Cyclization and Cyclodimerization by CuI-Mediated Azide-Alkyne Cycloaddition

Reshma Jagasia; Justin M. Holub; Markus Bollinger; Kent Kirshenbaum; M. G. Finn

Head-to-tail cyclodimerization of resin-bound oligopeptides bearing azide and alkyne groups occurs readily by 1,3-dipolar cycloaddition upon treatment with Cu(I). The process was found to be independent of peptide sequence, sensitive to the proximity of the alkyne to the resin, sensitive to solvent composition, facile for alpha- and beta-peptides but not for gamma-peptides, and inhibited by the inclusion of tertiary amide linkages. Peptides shorter than hexamers were predominantly converted to cyclic monomers. Oligoglycine and oligo(beta-alanine) chains underwent oligomerization by 1,3-dipolar cycloaddition in the absence of a copper catalyst. These results suggest that cyclodimerization depends on the ability of the azido-alkyne peptide to form in-frame hydrogen bonds between chains in order to place the reacting groups in close proximity and lower the entropic penalty for dimerization. The properties of the resin and solvent are crucial, giving rise to a productive balance between swelling and interstrand H-bonding. These findings allow for the design of optimal substrates for triazole-forming ring closure and for the course of the reaction to be controlled by the choice of conditions.


ChemMedChem | 2012

A Comparison of Linear and Cyclic Peptoid Oligomers as Potent Antimicrobial Agents

Mia Lace Huang; Sung Bin Y. Shin; Meredith A. Benson; Victor J. Torres; Kent Kirshenbaum

We investigated the antimicrobial activities of N‐substituted glycine “peptoid” oligomers incorporating cationic and hydrophobic side chains. Head‐to‐tail macrocyclization was employed to enhance antimicrobial activity. Both linear and cyclic peptoids, ranging from six to ten residues, demonstrate potent antimicrobial activity against Gram‐positive and Gram‐negative bacteria. These peptoids do not cause significant lysis of human erythrocytes, indicating selective antimicrobial activity. Conformational ordering established upon macrocyclization is generally associated with an enhanced capacity to inhibit bacterial cell growth. Moreover, increased hydrophobic surface area also plays a role in improving antimicrobial activity. We demonstrate the potency of a cyclic peptoid in exerting antimicrobial activity against clinical strains of S. aureus while deterring the emergence of antimicrobial resistance.


Journal of the American Chemical Society | 2009

A Preliminary Survey of the Peptoid Folding Landscape

Glenn L. Butterfoss; P. Douglas Renfrew; Brian Kuhlman; Kent Kirshenbaum; Richard Bonneau

We present an analysis of the conformational preferences of N-substituted glycine peptoid oligomers. We survey the backbone conformations observed in experimentally determined peptoid structures and provide a comparison with high-level quantum mechanics calculations of short peptoid oligomers. The dominant sources of structural variation derive from: side-chain dependent cis/trans isomerization of backbone amide bonds, side chain stereochemistry, and flexibility in the psi dihedral angle. We find good agreement between the clustering of experimentally determined peptoid torsion angles and local torsional minima predicted by theory for a disarcosine model. The calculations describe a well-defined conformational map featuring distinct energy minima. The general features of the peptoid backbone conformational landscape are consistent across a range of N-alkyl glycine side chains. Alteration of side chain types, however, creates subtle but potentially significant variations in local folding propensities. We identify a limited number of low energy local conformations, which may be preferentially favored by incorporation of particular monomer units. Greater variation in backbone dihedral angles are accessible in peptoids featuring trans amide bond geometries. These results confirm that computational approaches can play a valuable role in guiding the design of complex peptoid architectures and may lead to strategies for introducing constraints that select among a limited number of low energy local conformations.


Journal of the American Chemical Society | 2012

Multivalent Peptidomimetic Conjugates: A Versatile Platform for Modulating Androgen Receptor Activity

Paul M. Levine; Keren Imberg; Michael J. Garabedian; Kent Kirshenbaum

We introduce a family of multivalent peptidomimetic conjugates that modulate the activity of the androgen receptor (AR). Bioactive ethisterone ligands were conjugated to a set of sequence-specific peptoid oligomers. Certain multivalent peptoid conjugates enhance AR-mediated transcriptional activation. We identify a linear and a cyclic conjugate that exhibit potent anti-proliferative activity in LNCaP-abl cells, a model of therapy-resistant prostate cancer. The linear conjugate blocks AR action by competing for ligand binding. In contrast, the cyclic conjugate is active despite its inability to compete against endogenous ligand for binding to AR in vitro, suggesting a non-competitive mode of action. These results establish a versatile platform to design competitive and non-competitive AR modulators with potential therapeutic significance.


Proceedings of the National Academy of Sciences of the United States of America | 2012

De novo structure prediction and experimental characterization of folded peptoid oligomers

Glenn L. Butterfoss; Barney Yoo; Jonathan N. Jaworski; Ilya Chorny; Ken A. Dill; Ronald N. Zuckermann; Richard Bonneau; Kent Kirshenbaum; Vincent A. Voelz

Peptoid molecules are biomimetic oligomers that can fold into unique three-dimensional structures. As part of an effort to advance computational design of folded oligomers, we present blind-structure predictions for three peptoid sequences using a combination of Replica Exchange Molecular Dynamics (REMD) simulation and Quantum Mechanical refinement. We correctly predicted the structure of a N-aryl peptoid trimer to within 0.2 Å rmsd-backbone and a cyclic peptoid nonamer to an accuracy of 1.0 Å rmsd-backbone. X-ray crystallographic structures are presented for a linear N-alkyl peptoid trimer and for the cyclic peptoid nonamer. The peptoid macrocycle structure features a combination of cis and trans backbone amides, significant nonplanarity of the amide bonds, and a unique “basket” arrangement of (S)-N(1-phenylethyl) side chains encompassing a bound ethanol molecule. REMD simulations of the peptoid trimers reveal that well folded peptoids can exhibit funnel-like conformational free energy landscapes similar to those for ordered polypeptides. These results indicate that physical modeling can successfully perform de novo structure prediction for small peptoid molecules.

Collaboration


Dive into the Kent Kirshenbaum's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Ronald N. Zuckermann

Lawrence Berkeley National Laboratory

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Ken A. Dill

Stony Brook University

View shared research outputs
Top Co-Authors

Avatar

Glenn L. Butterfoss

New York University Abu Dhabi

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge