Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Kent O. Burkey is active.

Publication


Featured researches published by Kent O. Burkey.


Science | 2012

Arbuscular Mycorrhizal Fungi Increase Organic Carbon Decomposition Under Elevated CO2

Lei Cheng; Fitzgerald L. Booker; Cong Tu; Kent O. Burkey; Lishi Zhou; H. David Shew; Thomas W. Rufty; Shuijin Hu

A Fungal Culprit to Carbon Loss In some ecosystems, such as in the layer of soil containing plant roots, fungi, and bacteria, increased levels of CO2 should stimulate more efficient aboveground photosynthesis, which in turn should promote increased sequestration of organic carbon in soil through the protective action of arbuscular mycorrhizal fungi. However, in a series of field and microcosm experiments performed under elevated levels of CO2 thought to be consistent with future emissions scenarios, Cheng et al. (p. 1084; see the Perspective by Kowalchuk) observed that these fungi actually promote degradation of soil organic carbon, releasing more CO2 in the process. Counter to expectations, fungi associated with plant roots diminish the carbon pool in soil ecosystems under elevated levels of carbon dioxide. The extent to which terrestrial ecosystems can sequester carbon to mitigate climate change is a matter of debate. The stimulation of arbuscular mycorrhizal fungi (AMF) by elevated atmospheric carbon dioxide (CO2) has been assumed to be a major mechanism facilitating soil carbon sequestration by increasing carbon inputs to soil and by protecting organic carbon from decomposition via aggregation. We present evidence from four independent microcosm and field experiments demonstrating that CO2 enhancement of AMF results in considerable soil carbon losses. Our findings challenge the assumption that AMF protect against degradation of organic carbon in soil and raise questions about the current prediction of terrestrial ecosystem carbon balance under future climate-change scenarios.


Photosynthesis Research | 1990

Acclimation of barley to changes in light intensity: photosynthetic electron transport activity and components

Winston Raul De la Torre; Kent O. Burkey

Barley seedlings (Hordeum vulgare L. Boone) were grown at 20°C with 16 h/8 h light/dark cycle of either high (H) intensity (500 μmole m-2 s-1) or low (L) intensity (55 μmole m-2 s-1) white light. Plants were transferred from high to low (H → L) and low to high (L → H) light intensity at various times from 4 to 8 d after leaf emergence from the soil. Primary leaves were harvested at the beginning of the photoperiod. Thylakoid membranes were isolated from 3 cm apical segments and assayed for photosynthetic electron transport, Photosystem II (PS II) atrazine-binding sites (QB), cytochrome f(Cytf) and the P-700 reaction center of Photosystem I (PS I). Whole chain, PS I and PS II electron transport activities were higher in H than in L controls. QB and Cytf were elevated in H plants compared with L plants. The acclimation of H → L plants to low light occurred slowly over a period of 7 days and resulted in decreased whole chain and PS II electron transport with variable effects on PS I activity. The decrease in electron transport of H → L plants was associated with a decrease in both QB and Cytf. In L → H plants, acclimation to high light occurred slowly over a period of 7 days with increased whole chain, PS I and PS II activities. The increase in L → H electron transport was associated with increased levels of QB and Cytf. In contrast to the light intensity effects on QB levels, the P-700 content was similar in both control and transferred plants. Therefore, PS II/PS I ratios were dependent on light environment.


Photosynthesis Research | 1990

Acclimation of barley to changes in light intensity: chlorophyll organization

Winston Raul De la Torre; Kent O. Burkey

Barley seedlings (Hordeum vulgare L. cv. Boone) were grown at 20°C with a 16h/8h light/dark cycle of either high (H) intensity (550 μmole m-2 s-1) or low (L) intensity (55 μmole m-2 s-1) white light. Plants were transferred from high to low (H → L) or low to high (L → H) light intensity at various times from 4 to 8 d after leaf emergence from the soil. Primary leaves were harvested at the beginning of the photoperiod and a 3 cm apical segment removed for analysis. H control plants had greater chlorophyll (Chl) per leaf area and higher Chl a/b ratios than L controls. Analysis of Chl-protein complexes revealed that H and L plants had the same percentage of total Chl (62–65%) associated with Photosystem II (PS II), but that the organization of Chl within PS II was different. H plants contained lower levels of light-harvesting complex (LHC-II) and higher levels of the PS II complex CPa compared with L plants. Leaf Chl content and Chl organization within PS II were sensitive to changes in light intensity. In H → L plants, leaf Chl content decreased, Chl a/b ratio decreased, and a redistribution of Chl from CPa to LHC-II occurred during acclimation to low light. Acclimation of L → H plants to high light involved an increase in leaf Chl content, an increase in Chl a/b ratio, and a decrease in LHC-II. In contrast, the level of photosystem I related Chl-protein complexes (CP1 + CP1a) was similar in all light treatments. The light acclimation process occurred slowly over a period of 6 to 8 d in H → L and L → H plants.


Crop Science | 2007

Elevated Carbon Dioxide and Ozone Effects on Peanut: I. Gas-Exchange, Biomass, and Leaf Chemistry

Fitzgerald L. Booker; Kent O. Burkey; Walter A. Pursley; Allen S. Heagle

The effects of elevated CO2 and ozone (O3) on net photosynthetic rate (A) and growth are generally antagonistic although plant responses are highly dependent on crop sensitivity to the individual gases and their concentrations. In this experiment, we evaluated the effects of various CO2 and O3 mixtures on leaf gas-exchange, harvest biomass, and leaf chemistry in peanut (Arachis hypogaea L.), an O3-sensitive species, using open-top field chambers. Treatments included ambient CO2 (about 375 micromol mol-1) and CO2 enrichment of approximately 173 and 355 micromol mol-1 in combination with charcoal-filtered air (22 nmol O3 mol-1), nonfiltered air (46 nmol O3 mol-1), and nonfiltered air plus O3 (75 nmol O3 mol-1). Twice-ambient CO2 in charcoal-filtered air increased A by 23% while decreasing seasonal stomatal conductance (gs) by 42%. Harvest biomass was increased 12 to 15% by elevated CO2. In ambient CO2, nonfiltered air and added O3 lowered A by 21% and 48%, respectively, while added O3 reduced gs by 18%. Biomass was not significantly affected by nonfiltered air, but was 40% lower in the added O3 treatment. Elevated CO2 generally suppressed inhibitory effects of O3 on A and harvest biomass. Leaf starch concentration was increased by elevated CO2 and decreased by O3. Treatment effects on foliar N and total phenolic concentrations were minor. Increasing atmospheric CO2 concentrations should attenuate detrimental effects of ambient O3 and promote growth in peanut but its effectiveness declines with increasing O3 concentrations.


Plant Cell and Environment | 2012

Re-evaluating the role of ascorbic acid and phenolic glycosides in ozone scavenging in the leaf apoplast of Arabidopsis thaliana L

Fitzgerald L. Booker; Kent O. Burkey; Alan M. Jones

Phenolic glycosides are effective reactive oxygen scavengers and peroxidase substrates, suggesting that compounds in addition to ascorbate may have functional importance in defence responses against ozone (O(3)), especially in the leaf apoplast. The apoplastic concentrations of ascorbic acid (AA) and phenolic glycosides in Arabidopsis thaliana L. Col-0 wild-type plants were determined following exposure to a range of O(3) concentrations (5, 125 or 175 nL L(-1)) in controlled environment chambers. AA in leaf apoplast extracts was almost entirely oxidized in all treatments, suggesting that O(3) scavenging by direct reactions with reduced AA was very limited. In regard to phenolics, O(3) stimulated transcription of numerous phenylpropanoid pathway genes and increased the apoplastic concentration of sinapoyl malate. However, modelling of O(3) scavenging in the apoplast indicated that sinapoyl malate concentrations were too low to be effective protectants. Furthermore, null mutants for sinapoyl esters (fah1-7), kaempferol glycosides (tt4-1) and the double mutant (tt4-1/fah1-7) were equally sensitive to chronic O(3) as Ler-0 wild-type plants. These results indicate that current understanding of O(3) defence schemes deserves reassessment as mechanisms other than direct scavenging of O(3) by extracellular AA and antioxidant activity of some phenolics may predominate in some plant species.


Plant Cell and Environment | 2012

Minimal influence of G-protein null mutations on ozone-induced changes in gene expression, foliar injury, gas exchange and peroxidase activity in Arabidopsis thaliana L.

Fitzgerald L. Booker; Kent O. Burkey; Patrick Morgan; Edwin L. Fiscus; Alan M. Jones

Ozone (O(3)) uptake by plants leads to an increase in reactive oxygen species (ROS) in the intercellular space of leaves and induces signalling processes reported to involve the membrane-bound heterotrimeric G-protein complex. Therefore, potential G-protein-mediated response mechanisms to O(3) were compared between Arabidopsis thaliana L. lines with null mutations in the α- and β-subunits (gpa1-4, agb1-2 and gpa1-4/agb1-2) and Col-0 wild-type plants. Plants were treated with a range of O(3) concentrations (5, 125, 175 and 300 nL L(-1)) for 1 and 2 d in controlled environment chambers. Transcript levels of GPA1, AGB1 and RGS1 transiently increased in Col-0 exposed to 125 nL L(-1) O(3) compared with the 5 nL L(-1) control treatment. However, silencing of α and β G-protein genes resulted in little alteration of many processes associated with O(3) injury, including the induction of ROS-signalling genes, increased leaf tissue ion leakage, decreased net photosynthesis and stomatal conductance, and increased peroxidase activity, especially in the leaf apoplast. These results indicated that many responses to O(3) stress at physiological levels were not detectably influenced by α and β G-proteins.


New Phytologist | 2013

Elevated CO2 spurs reciprocal positive effects between a plant virus and an arbuscular mycorrhizal fungus

Megan A. Rúa; James Umbanhowar; Shuijin Hu; Kent O. Burkey; Charles E. Mitchell

Plants form ubiquitous associations with diverse microbes. These interactions range from parasitism to mutualism, depending partly on resource supplies that are being altered by global change. While many studies have considered the separate effects of pathogens and mutualists on their hosts, few studies have investigated interactions among microbial mutualists and pathogens in the context of global change. Using two wild grass species as model hosts, we grew individual plants under ambient or elevated CO(2), and ambient or increased soil phosphorus (P) supply. Additionally, individuals were grown with or without arbuscular mycorrhizal inoculum, and after 2 wk, plants were inoculated or mock-inoculated with a phloem-restricted virus. Under elevated CO(2), mycorrhizal association increased the titer of virus infections, and virus infection reciprocally increased the colonization of roots by mycorrhizal fungi. Additionally, virus infection decreased plant allocation to root biomass, increased leaf P, and modulated effects of CO(2) and P addition on mycorrhizal root colonization. These results indicate that plant mutualists and pathogens can alter each others success, and predict that these interactions will respond to increased resource availability and elevated CO(2). Together, our findings highlight the importance of interactions among multiple microorganisms for plant performance under global change.


Photosynthesis Research | 1996

Genetic variation in soybean photosynthetic electron transport capacity is related to plastocyanin concentration in the chloroplast.

Kent O. Burkey; Ziya Gizlice; Thomas E. Carter

Fifteen ancestral genotypes of United States soybean cultivars were screened for differences in photosynthetic electron transport capacity using isolated thylakoid membranes. Plants were grown in controlled environment chambers under high or low irradiance conditions. Thylakoid membranes were isolated from mature leaves. Photosynthetic electron transport was assayed as uncoupled Hill activity using 2,6-dichlorophenolindophenol (DCIP). Soybean electron transport activity was dependent on genotype and growth irradiance and ranged from 6 to 91 mmol DCIP reduced [mol chlorophyll]−1 s−1. Soybean plastocyanin pool size ranged from 0.1 to 1.3 mol plastocyanin [mol Photosystem I]−1. In contrast, barley and spinach electron transport activities were 140 and 170 mmol DCIP reduced [mol chlorophyll]−1 s−1, respectively, with plastocyanin pool sizes of 3 to 4 mol plastocyanin [mol Photosystem I]−1. No significant differences in the concentrations of Photosystem II, plastoquinone, cytochrome b6f complexes, or Photosystem I were observed. Thus, genetic differences in electron transport activity were correlated with plastocyanin pool size. The results suggested that plastocyanin pool size can vary significantly and may limit photosynthetic electron transport capacity in certain species such as soybean. Soybean plastocyanin consisted of two isoforms with apparent molecular masses of 14 and 11 kDa, whereas barley and spinach plastocyanins each consisted of single polypeptides of 8 and 12 kDa, respectively.


Photosynthesis Research | 1993

Effect of growth irradiance on plastocyanin levels in barley.

Kent O. Burkey

Plastocyanin levels in barley (Hordeum vulgare cv Boone) were found to be dependent on growth irradiance. An immunochemical assay was developed and used to measure the plastocyanin content of isolated thylakoid membranes. Barley grown under 600 μmole photons m−2s−1 contained two- to four-fold greater quantities of plastocyanin per unit chlorophyll compared with plants grown under 60 μmole photons m−2s−1. The plastocyanin/Photosystem I ratio was found to be 2 to 3 under high irradiance compared with 0.5 to 1.5 under low irradiance. The reduced plastocyanin pool size in low light plants contributed to a two-fold reduction in photosynthetic electron transport activity. Plastocyanin levels increased upon transfer of low light plants to high irradiance conditions. In contrast, plastocyanin levels were not affected in plants transferred from high to low irradiance, suggesting that plastocyanin is not involved in the acclimation of photosynthesis to shade.


PLOS ONE | 2011

Soil Microbial Responses to Elevated CO2 and O3 in a Nitrogen-Aggrading Agroecosystem

Lei Cheng; Fitzgerald L. Booker; Kent O. Burkey; Cong Tu; H. David Shew; Thomas W. Rufty; Edwin L. Fiscus; Jared L. DeForest; Shuijin Hu

Climate change factors such as elevated atmospheric carbon dioxide (CO2) and ozone (O3) can exert significant impacts on soil microbes and the ecosystem level processes they mediate. However, the underlying mechanisms by which soil microbes respond to these environmental changes remain poorly understood. The prevailing hypothesis, which states that CO2- or O3-induced changes in carbon (C) availability dominate microbial responses, is primarily based on results from nitrogen (N)-limiting forests and grasslands. It remains largely unexplored how soil microbes respond to elevated CO2 and O3 in N-rich or N-aggrading systems, which severely hinders our ability to predict the long-term soil C dynamics in agroecosystems. Using a long-term field study conducted in a no-till wheat-soybean rotation system with open-top chambers, we showed that elevated CO2 but not O3 had a potent influence on soil microbes. Elevated CO2 (1.5×ambient) significantly increased, while O3 (1.4×ambient) reduced, aboveground (and presumably belowground) plant residue C and N inputs to soil. However, only elevated CO2 significantly affected soil microbial biomass, activities (namely heterotrophic respiration) and community composition. The enhancement of microbial biomass and activities by elevated CO2 largely occurred in the third and fourth years of the experiment and coincided with increased soil N availability, likely due to CO2-stimulation of symbiotic N2 fixation in soybean. Fungal biomass and the fungi∶bacteria ratio decreased under both ambient and elevated CO2 by the third year and also coincided with increased soil N availability; but they were significantly higher under elevated than ambient CO2. These results suggest that more attention should be directed towards assessing the impact of N availability on microbial activities and decomposition in projections of soil organic C balance in N-rich systems under future CO2 scenarios.

Collaboration


Dive into the Kent O. Burkey's collaboration.

Top Co-Authors

Avatar

Fitzgerald L. Booker

North Carolina State University

View shared research outputs
Top Co-Authors

Avatar

Edwin L. Fiscus

North Carolina State University

View shared research outputs
Top Co-Authors

Avatar

Shuijin Hu

North Carolina State University

View shared research outputs
Top Co-Authors

Avatar

Cong Tu

North Carolina State University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Chiu-Yueh Hung

North Carolina Central University

View shared research outputs
Top Co-Authors

Avatar

Jiahua Xie

North Carolina Central University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Thomas E. Carter

Agricultural Research Service

View shared research outputs
Researchain Logo
Decentralizing Knowledge