Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Kent R. Hersey is active.

Publication


Featured researches published by Kent R. Hersey.


Journal of Applied Ecology | 2013

Relative influence of human harvest, carnivores, and weather on adult female elk survival across western North America

Jedediah F. Brodie; Heather E. Johnson; Michael S. Mitchell; Peter Zager; Kelly M. Proffitt; Mark Hebblewhite; Matthew J. Kauffman; Bruce K. Johnson; John A. Bissonette; Chad J. Bishop; Justin A. Gude; Jeff Herbert; Kent R. Hersey; Mark A. Hurley; Paul M. Lukacs; Scott McCorquodale; Eliot J. B. McIntire; Josh Nowak; Hall Sawyer; Douglas W. Smith; P. J. White

Summary 1. Well-informed management of harvested species requires understanding how changing ecological conditions affect demography and population dynamics, information that is lacking for many species. We have limited understanding of the relative influence of carnivores, harvest, weather and forage availability on elk Cervus elaphus demography, despite the ecological and economic importance of this species. We assessed adult female survival, a key vital rate for population dynamics, from 2746 radio-collared elk in 45 populations across western North America that experience wide variation in carnivore assemblage, harvest, weather and habitat conditions. 2. Proportional hazard analysis revealed that ‘baseline’ (i.e. not related to human factors) mortality was higher with very high winter precipitation, particularly in populations sympatric with wolves Canis lupus. Mortality may increase via nutritional stress and heightened vulnerability to predation in snowy winters. Baseline mortality was unrelated to puma Puma concolor presence, forest cover or summer forage productivity. 3. Cause-specific mortality analyses showed that wolves and all carnivore species combined had additive effects on baseline elk mortality, but only reduced survival by <2%. When human factors were included, ‘total’ adult mortality was solely related to harvest; the influence of native carnivores was compensatory. Annual total mortality rates were lowest in populations sympatric with both pumas and wolves because managers reduced female harvest in areas with abundant or diverse carnivores.


Proceedings of the Royal Society B: Biological Sciences | 2016

Large herbivores surf waves of green-up during spring

Jerod A. Merkle; Kevin L. Monteith; Ellen O. Aikens; Matthew M. Hayes; Kent R. Hersey; Arthur D. Middleton; Brendan A. Oates; Hall Sawyer; Brandon M. Scurlock; Matthew J. Kauffman

The green wave hypothesis (GWH) states that migrating animals should track or ‘surf’ high-quality forage at the leading edge of spring green-up. To index such high-quality forage, recent work proposed the instantaneous rate of green-up (IRG), i.e. rate of change in the normalized difference vegetation index over time. Despite this important advancement, no study has tested the assumption that herbivores select habitat patches at peak IRG. We evaluated this assumption using step selection functions parametrized with movement data during the green-up period from two populations each of bighorn sheep, mule deer, elk, moose and bison, totalling 463 individuals monitored 1–3 years from 2004 to 2014. Accounting for variables that typically influence habitat selection for each species, we found seven of 10 populations selected patches exhibiting high IRG—supporting the GWH. Nonetheless, large herbivores selected for the leading edge, trailing edge and crest of the IRG wave, indicating that other mechanisms (e.g. ruminant physiology) or measurement error inherent with satellite data affect selection for IRG. Our evaluation indicates that IRG is a useful tool for linking herbivore movement with plant phenology, paving the way for significant advancements in understanding how animals track resource quality that varies both spatially and temporally.


Oecologia | 2015

Effects of climate and plant phenology on recruitment of moose at the southern extent of their range

Kevin L. Monteith; Robert W. Klaver; Kent R. Hersey; A. Andrew Holland; Timothy P. Thomas; Matthew J. Kauffman

Climate plays a fundamental role in limiting the range of a species, is a key factor in the dynamics of large herbivores, and is thought to be involved in declines of moose populations in recent decades. We examined effects of climate and growing-season phenology on recruitment (8–9 months old) of young Shiras moose (Alces alces shirasi) over three decades, from 18 herds, across a large geographic area encompassing much of the southern extent of their range. Recruitment declined in 8 of 18 herds during 1980–2009, whereas others did not exhibit a temporal trend (none showed a positive trend). During those three decades, seasonal temperatures increased, spring–summer precipitation decreased, and spring occurred earlier, became shorter in duration, and green-up occurred faster. Recruitment was influenced negatively by warm temperatures during the year before young were born, but only for herds with declining recruitment. Dry spring–summers of the previous year and rapid rates of spring green-up in the year of birth had similar negative influences across declining and stable herds. Those patterns indicate both direct (yeart) and delayed (yeart−1) effects of weather and plant phenology on recruitment of young, which we hypothesize was mediated through effects on maternal nutritional condition. Suppressed nutrition could have been induced by (1) increased thermoregulatory costs associated with warming temperatures and (2) shortened duration of availability of high-quality forage in spring. Progressive reductions in net energetic gain for species that are sensitive to climate may continue to hamper individual fitness and population dynamics.


Journal of Mammalogy | 2012

Climate and density-dependent drivers of recruitment in plains bison

David N. Koons; Pat Terletzky; Peter B. Adler; Michael L. Wolfe; Dustin H. Ranglack; Frank P. Howe; Kent R. Hersey; Wade Paskett; Johan T. du Toit

Abstract In semiarid ecosystems ungulate densities can compound the effects of drought on forage availability, which can feed back to regulate reproduction and offspring recruitment. Climatic changes in the frequency and severity of drought could thus exacerbate these effects. Here, we use long-term data sets to examine the dual influences of population density, cohort, and climatic variation on recruitment in the Henry Mountains bison (Bison bison bison) population. We found that 1-year lagged annual precipitation had a positive effect on recruitment (&bgr;  =  0.032, SE  =  0.009) and population density had a negative effect (&bgr;  =  −0.0023, SE  =  0.0004), but did not detect cohort effects. Furthermore, the effect of population density seemed to be more severe in dry relative to wet conditions, indicating that competition for forage could be severe in drought conditions. These results could help managers gain insight into the effects of climate change on bison population dynamics, and help guide the management of bison abundance on rangelands shared with cattle.


Ecological Applications | 2015

Disentangling the effects of climate, density dependence, and harvest on an iconic large herbivore's population dynamics.

David N. Koons; Fernando Colchero; Kent R. Hersey; Olivier Gimenez

Understanding the relative effects of climate, harvest, and density dependence on population dynamics is critical for guiding sound population management, especially for ungulates in arid and semiarid environments experiencing climate change. To address these issues for bison in southern Utah, USA, we applied a Bayesian state-space model to a 72-yr time series of abundance counts. While accounting for known harvest (as well as live removal) from the population, we found that the bison population in southern Utah exhibited a strong potential to grow from low density (β0 = 0.26; Bayesian credible interval based on 95% of the highest posterior density [BCI] = 0.19-0.33), and weak but statistically significant density dependence (β1 = -0.02, BCI = -0.04 to -0.004). Early spring temperatures also had strong positive effects on population growth (Pfat1 = 0.09, BCI = 0.04-0.14), much more so than precipitation and other temperature-related variables (model weight > three times more than that for other climate variables). Although we hypothesized that harvest is the primary driving force of bison population dynamics in southern Utah, our elasticity analysis indicated that changes in early spring temperature could have a greater relative effect on equilibrium abundance than either harvest or. the strength of density dependence. Our findings highlight the utility of incorporating elasticity analyses into state-space population models, and the need to include climatic processes in wildlife management policies and planning.


Journal of Mammalogy | 2016

Reproduction in moose at their southern range limit

Joel S. Ruprecht; Kent R. Hersey; Konrad Hafen; Kevin L. Monteith; Nicholas J. DeCesare; Matthew J. Kauffman; Daniel R. MacNulty

Reproduction is a critical fitness component in large herbivores. Biogeographic models predict that populations occurring at the edges of the range may have compromised reproductive rates because of inferior habitat at range peripheries. When reproductive rates are chronically low, ungulate populations may lack the resiliency to rebound quickly after periods of environmental stress, and this effect may be greatest for heat-sensitive organisms at their southern range limit. To assess the demographic vulnerability of moose (Alces alces), we studied relationships between reproductive rates, maternal age, and rump fat in the southernmost naturally occurring moose population in North America. For prime-aged moose in our study, pregnancy rates were high (92%), but moose aged < 3 or > 9 years had low pregnancy rates (32% and 38%, respectively). The relationship between rump fat and pregnancy was nonlinear such that a threshold of at least 2 mm of rump fat yielded a high probability of being pregnant midwinter. In contrast, among pregnant moose, the probability of both producing a calf and recruiting it until spring increased linearly with rump fat. We also conducted a meta-analysis of pregnancy and twinning rates for adult (≥ 2 years) moose across a latitudinal gradient to compare reproductive rates from our study to other populations in North America. Moose living at southern latitudes tended to have lower reproductive rates than those living in the core of moose range, implying that southern moose populations may be demographically more vulnerable than northern moose populations.


Ecological Applications | 2018

Spatial processes decouple management from objectives in a heterogeneous landscape: predator control as a case study

Peter J. Mahoney; Julie K. Young; Kent R. Hersey; Randy T. Larsen; Brock R. McMillan; David C. Stoner

Predator control is often implemented with the intent of disrupting top-down regulation in sensitive prey populations. However, ambiguity surrounding the efficacy of predator management, as well as the strength of top-down effects of predators in general, is often exacerbated by the spatially implicit analytical approaches used in assessing data with explicit spatial structure. Here, we highlight the importance of considering spatial context in the case of a predator control study in south-central Utah. We assessed the spatial match between aerial removal risk in coyotes (Canis latrans) and mule deer (Odocoileus hemionus) resource selection during parturition using a spatially explicit, multi-level Bayesian model. With our model, we were able to evaluate spatial congruence between management action (i.e., coyote removal) and objective (i.e., parturient deer site selection) at two distinct scales: the level of the management unit and the individual coyote removal. In the case of the former, our results indicated substantial spatial heterogeneity in expected congruence between removal risk and parturient deer site selection across large areas, and is a reflection of logistical constraints acting on the management strategy and differences in space use between the two species. At the level of the individual removal, we demonstrated that the potential management benefits of a removed coyote were highly variable across all individuals removed and in many cases, spatially distinct from parturient deer resource selection. Our methods and results provide a means of evaluating where we might anticipate an impact of predator control, while emphasizing the need to weight individual removals based on spatial proximity to management objectives in any assessment of large-scale predator control. Although we highlight the importance of spatial context in assessments of predator control strategy, we believe our methods are readily generalizable in any management or large-scale experimental framework where spatial context is likely an important driver of outcomes.


Rangelands | 2016

Lessons Learned from Bison Restoration Efforts in Utahi on Western Rangelands

Bill Bates; Kent R. Hersey

On the Ground Bison are considered the keystone species of the Great Plains but widespread slaughter led to their near extinction. Utah has two wild, free-ranging herds on public lands managed as wildlife though hunting. Both herds are descended from animals reintroduced to the Henry Mountains in the 1940s and more recently the Book Cliffs in 2008. Key elements for the successful ecological restoration of bison include: Legal designation of bison as wildlife in the state Genetically-pure, disease-free source Large expanses of habitat-they take a lot of room Potential conflicts must be identified and addressed in a transparent manner Mutual purpose and trust with all affected stakeholders is essential; i.e., ask, How can we have both sustainable livestock grazing and a viable bison herd on the unit? Active management to address changing situations and maintain herd size at a sustainable level


Alces | 2010

A HISTORY OF MOOSE MANAGEMENT IN UTAH

Michael L. Wolfe; Kent R. Hersey; David C. Stoner


Journal of Wildlife Management | 2018

Factors influencing elk recruitment across ecotypes in the Western United States: Factors Influencing Elk Recruitment

Paul M. Lukacs; Michael S. Mitchell; Mark Hebblewhite; Bruce K. Johnson; Heather E. Johnson; Matthew J. Kauffman; Kelly M. Proffitt; Peter Zager; Jedediah F. Brodie; Kent R. Hersey; A. Andrew Holland; Mark A. Hurley; Scott McCorquodale; Arthur D. Middleton; Matthew Nordhagen; J. Joshua Nowak; Daniel P. Walsh; P. J. White

Collaboration


Dive into the Kent R. Hersey's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Bruce K. Johnson

Oregon Department of Fish and Wildlife

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Frank P. Howe

Utah Division of Wildlife Resources

View shared research outputs
Researchain Logo
Decentralizing Knowledge