Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Kenta Kuramoto is active.

Publication


Featured researches published by Kenta Kuramoto.


Molecular and Cellular Biology | 2014

Deficiency of a lipid droplet protein, perilipin 5, suppresses myocardial lipid accumulation, thereby preventing type 1 diabetes-induced heart malfunction.

Kenta Kuramoto; Fumie Sakai; Nana Yoshinori; Tomoe Y. Nakamura; Shigeo Wakabayashi; Tomoko Kojidani; Tokuko Haraguchi; Fumiko Hirose; Takashi Osumi

ABSTRACT Lipid droplet (LD) is a ubiquitous organelle that stores triacylglycerol and other neutral lipids. Perilipin 5 (Plin5), a member of the perilipin protein family that is abundantly expressed in the heart, is essential to protect LDs from attack by lipases, including adipose triglyceride lipase. Plin5 controls heart metabolism and performance by maintaining LDs under physiological conditions. Aberrant lipid accumulation in the heart leads to organ malfunction, or cardiomyopathy. To elucidate the role of Plin5 in a metabolically disordered state and the mechanism of lipid-induced cardiomyopathy, we studied the effects of streptozotocin-induced type 1 diabetes in Plin5-knockout (KO) mice. In contrast to diabetic wild-type mice, diabetic Plin5-KO mice lacked detectable LDs in the heart and did not exhibit aberrant lipid accumulation, excessive reactive oxygen species (ROS) generation, or heart malfunction. Moreover, diabetic Plin5-KO mice exhibited lower heart levels of lipotoxic molecules, such as diacylglycerol and ceramide, than wild-type mice. Membrane translocation of protein kinase C and the assembly of NADPH oxidase 2 complex on the membrane were also suppressed. The results suggest that diabetic Plin5-KO mice are resistant to type 1 diabetes-induced heart malfunction due to the suppression of the diacylglycerol/ceramide-protein kinase C pathway and of excessive ROS generation by NADPH oxidase.


Oncotarget | 2016

The novel JNK inhibitor AS602801 inhibits cancer stem cells in vitro and in vivo.

Masashi Okada; Kenta Kuramoto; Hiroyuki Takeda; Hikaru Watarai; Hirotsugu Sakaki; Shizuka Seino; Manabu Seino; Shuhei Suzuki; Chifumi Kitanaka

A phase 2 clinical trial investigating the efficacy and safety of AS602801, a newly developed JNK inhibitor, in the treatment of inflammatory endometriosis is complete. We are now examining whether AS602801 acts against human cancer cells in vitro and in vivo. In vitro, AS602801 exhibited cytotoxicity against both serum-cultured non-stem cancer cells and cancer stem cells derived from human pancreatic cancer, non-small cell lung cancer, ovarian cancer and glioblastoma at concentrations that did not decrease the viability of normal human fibroblasts. AS602801 also inhibited the self-renewal and tumor-initiating capacity of cancer stem cells surviving AS602801 treatment. Cancer stem cells in established xenograft tumors were reduced by systemic administration of AS602801 at a dose and schedule that did not adversely affect the health of the tumor-bearing mice. These findings suggest AS602801 is a promising anti-cancer stem cell agent, and further investigation of the utility of AS602801 in the treatment of cancer seems warranted.


Oncology Reports | 2016

Time-staggered inhibition of JNK effectively sensitizes chemoresistant ovarian cancer cells to cisplatin and paclitaxel.

Manabu Seino; Masashi Okada; Hirotsugu Sakaki; Hiroyuki Takeda; Hikaru Watarai; Shuhei Suzuki; Shizuka Seino; Kenta Kuramoto; Tsuyoshi Ohta; Satoru Nagase; Hirohisa Kurachi; Chifumi Kitanaka

Ovarian cancer is the most lethal gynecological malignancy, for which platinum- and taxane-based chemotherapy plays a major role. Chemoresistance of ovarian cancer poses a major obstacle to the successful management of this devastating disease; however, effective measures to overcome platinum and taxane resistance are yet to be established. In the present study, while investigating the mechanism underlying the chemoresistance of ovarian cancer, we found that JNK may have a key role in the resistance of ovarian cancer cells to cisplatin and paclitaxel. Importantly, whereas simultaneous application of a JNK inhibitor and either of the chemotherapeutic agents had contrasting effects for cisplatin (enhanced cytotoxicity) and paclitaxel (decreased cytotoxicity), JNK inhibitor treatment prior to chemotherapeutic agent application invariably enhanced the cytotoxicity of both drugs, suggesting that the basal JNK activity is commonly involved in the chemoresistance of ovarian cancer cells to cisplatin and paclitaxel in contrast to drug‑induced JNK activity which may have different roles for these two drugs. Furthermore, we confirmed using non-transformed human and rodent fibroblasts that sequential application of the JNK inhibitor and the chemotherapeutic agents did not augment their toxicity. Thus, our findings highlight for the first time the possible differential roles of the basal and induced JNK activities in the chemoresistance of ovarian cancer cells and also suggest that time‑staggered JNK inhibition may be a rational and promising strategy to overcome the resistance of ovarian cancer to platinum- and taxane-based chemotherapy.


Autophagy | 2016

Autophagy activation by novel inducers prevents BECN2-mediated drug tolerance to cannabinoids

Kenta Kuramoto; Nan Wang; Yuying Fan; Weiran Zhang; Frank J. Schoenen; Kevin J. Frankowski; Juan J. Marugan; Yifa Zhou; Sui Huang; Congcong He

ABSTRACT Cannabinoids and related drugs generate profound behavioral effects (such as analgesic effects) through activating CNR1 (cannabinoid receptor 1 [brain]). However, repeated cannabinoid administration triggers lysosomal degradation of the receptor and rapid development of drug tolerance, limiting the medical use of marijuana in chronic diseases. The pathogenic mechanisms of cannabinoid tolerance are not fully understood, and little is known about its prevention. Here we show that a protein involved in macroautophagy/autophagy (a conserved lysosomal degradation pathway), BECN2 (beclin 2), mediates cannabinoid tolerance by preventing CNR1 recycling and resensitization after prolonged agonist exposure, and deletion of Becn2 rescues CNR1 activity in mouse brain and conveys resistance to analgesic tolerance to chronic cannabinoids. To target BECN2 therapeutically, we established a competitive recruitment model of BECN2 and identified novel synthetic, natural or physiological stimuli of autophagy that sequester BECN2 from its binding with GPRASP1, a receptor protein for CNR1 degradation. Co-administration of these autophagy inducers effectively restores the level and signaling of brain CNR1 and protects mice from developing tolerance to repeated cannabinoid usage. Overall, our findings demonstrate the functional link among autophagy, receptor signaling and animal behavior regulated by psychoactive drugs, and develop a new strategy to prevent tolerance and improve medical efficacy of cannabinoids by modulating the BECN2 interactome and autophagy activity.


Cell Reports | 2018

Autophagy Differentially Regulates Insulin Production and Insulin Sensitivity

Soh Yamamoto; Kenta Kuramoto; Nan Wang; Xiaolei Situ; Medha Priyadarshini; Weiran Zhang; Jose Cordoba-Chacon; Brian T. Layden; Congcong He

SUMMARY Autophagy, a stress-induced lysosomal degradative pathway, has been assumed to exert similar metabolic effects in different organs. Here, we establish a model where autophagy plays different roles in insulin-producing β cells versus insulin-responsive cells, utilizing knockin (Becn1F121A) mice manifesting constitutively active autophagy. With a high-fat-diet challenge, the autophagy-hyperactive mice unexpectedly show impaired glucose tolerance, but improved insulin sensitivity, compared to mice with normal autophagy. Autophagy hyperactivation enhances insulin signaling, via suppressing ER stress in insulin-responsive cells, but decreases insulin secretion by selectively sequestrating and degrading insulin granule vesicles in β cells, a process we term “vesicophagy.” The reduction in insulin storage, insulin secretion, and glucose tolerance is reversed by transient treatment of autophagy inhibitors. Thus, β cells and insulin-responsive tissues require different autophagy levels for optimal function. To improve insulin sensitivity without hampering secretion, acute or intermittent, rather than chronic, activation of autophagy should be considered in diabetic therapy development.


FEBS Open Bio | 2017

Licochalcone A specifically induces cell death in glioma stem cells via mitochondrial dysfunction

Kenta Kuramoto; Shuhei Suzuki; Hirotsugu Sakaki; Hiroyuki Takeda; Tomomi Sanomachi; Shizuka Seino; Yoshitaka Narita; Takamasa Kayama; Chifumi Kitanaka; Masashi Okada

Glioblastoma multiforme is the most malignant primary intrinsic brain tumor. Glioma stem cells (GSCs) are associated with chemoradiotherapy resistance and the recurrence of glioblastomas after conventional therapy. The targeting of GSCs is potentially an effective treatment for the long‐term survival of glioblastoma patients. Licochalcone A, a natural chalconoid from licorice root, exerts anticancer effects; however, its effect on GSCs remains unknown. We found that Licochalcone A induced massive caspase‐dependent death in GSCs but not in differentiated GSCs nor normal somatic and neural stem cells. Prior to cell death, Licochalcone A caused mitochondrial fragmentation and reduced the membrane potential and ATP production in GSCs. Thus, Licochalcone A induces mitochondrial dysfunction and shows promise as an anticancer stem cell drug.


Oncotarget | 2018

Involvement of GLUT1-mediated glucose transport and metabolism in gefitinib resistance of non-small-cell lung cancer cells

Shuhei Suzuki; Masashi Okada; Hiroyuki Takeda; Kenta Kuramoto; Tomomi Sanomachi; Keita Togashi; Shizuka Seino; Masahiro Yamamoto; Takashi Yoshioka; Chifumi Kitanaka

Use of epidermal growth factor receptor (EGFR) inhibitors represented by gefitinib and erlotinib has become the standard of treatment for non-small-cell lung cancers (NSCLCs) with activating EGFR mutations. However, the majority of NSCLCs, which overexpress EGFR without such mutations, are resistant to EGFR inhibitors, and the mechanism(s) behind such primary resistance of NSCLCs without activating EGFR mutations to EGFR inhibitors still remains poorly understood. Here in this study, we show that glucose metabolism mediated by GLUT1, a facilitative glucose transporter, is involved in gefitinib resistance of NSCLC cells. We found that GLUT1 expression and glucose uptake were increased in resistant NSCLC cells after gefitinib treatment and that genetic as well as pharmacological inhibition of GLUT1 sensitized not only NSCLC cells with primary resistance but also those with acquired resistance to gefitinib. In vivo, the combination of systemic gefitinib and a GLUT1 inhibitor, both of which failed to inhibit tumor growth when administered alone, significantly inhibited the growth of xenograft tumors formed by the implantation of NSCLC cells with wild-type EGFR (wt-EGFR). Since our data indicated that GLUT1 was similarly involved in erlotinib resistance, our findings suggest that the activity of GLUT1-mediated glucose metabolism could be a critical determinant for the sensitivity of NSCLC cells to EGFR inhibitors and that concurrent GLUT1 inhibition may therefore be a mechanism-based approach to treating NSCLCs resistant to EGFR inhibitors, including those with wt-EGFR.


Autophagy | 2018

The BECN1-BCL2 complex regulates insulin secretion and storage in mice

Kenta Kuramoto; Congcong He

ABSTRACT Macroautophagy/autophagy abnormality has been recently associated with metabolic disorders, such as type 2 diabetes (T2D). However, the effect of autophagy activation in systemic energy metabolism was poorly understood. In our recent study, we demonstrated that autophagy plays different roles in distinct metabolic tissues, using an autophagy-hyperactive mouse model. In insulin-producing β cells, excess autophagy degrades insulin-containing vesicles (a process termed vesicophagy), resulting in decreased insulin contents and systemic glucose intolerance; whereas in insulin-responsive cells, activating autophagy decreases endoplasmic reticulum (ER) stress and improves insulin sensitivity.


Anticancer Research | 2018

AS602801, an Anti-Cancer Stem Cell Drug Candidate, Suppresses Gap-junction Communication Between Lung Cancer Stem Cells and Astrocytes

Kenta Kuramoto; Masahiro Yamamoto; Shuhei Suzuki; Tomomi Sanomachi; Keita Togashi; Shizuka Seino; Chifumi Kitanaka; Masashi Okada

Background/Aim: Cancer stem cells (CSCs) are associated with tumorigenesis, recurrence, and metastasis. Cell–cell communication via gap junctions (GJs) between metastatic cancer cells and astrocytes is necessary for brain metastasis. Agents targeting communication between CSCs and astrocytes are expected to suppress brain metastasis. Materials and Methods: Using the A549 CSC, a cancer stem-like cell derived from A549, we examined the effect of AS602801, an anti-cancer stem cell agent whose safety has been confirmed in a phase 2 clinical trial, on GJ communication and connexin expression using a dye-transfer assay and immunoblot analysis, respectively. Results: AS602801 specifically suppressed cell–cell communication in A549 CSCs without any suppression of GJ communication in astrocytes; it also decreased the expression of connexin 43, a constituent of GJs, in A549 CSCs. Conclusion: The anti-cancer stem cell agent, AS602801, is a potential drug candidate against brain metastasis.


Oncotarget | 2017

Antitumor activity of gemcitabine against high-grade meningioma in vitro and in vivo

Hiroyuki Takeda; Masashi Okada; Kenta Kuramoto; Shuhei Suzuki; Hirotsugu Sakaki; Tomomi Sanomachi; Shizuka Seino; Takashi Yoshioka; Hirofumi Hirano; Kazunori Arita; Chifumi Kitanaka

Currently, there is no established therapeutic option for high-grade meningioma recurring after surgery and radiotherapy, and few chemotherapeutic agents are in development for the treatment of high-grade meningioma. Here in this study, we screened a panel of chemotherapeutic agents for their possible antitumor activity in high-grade meningioma and discovered that high-grade meningioma cells show a preferential sensitivity to antimetabolites, in particular, to gemcitabine. In vitro, gemcitabine inhibited the growth of high-grade meningioma cells effectively by inducing S-phase arrest and apoptotic cell death. In vivo, systemic gemcitabine chemotherapy suppressed not only tumor initiation but also inhibited the growth and achieved a long-term control of established tumors in xenograft models of high-grade meningioma. Histological analysis indicated that systemic gemcitabine blocks cell cycle progression and promotes apoptotic cell death in tumor cells in vivo. Together, our data demonstrate that gemcitabine exerts potent antitumor activity against high-grade meningioma through cytostatic and cytotoxic mechanisms. We therefore propose gemcitabine is a promising chemotherapeutic agent that warrants further investigation as a treatment option for high-grade meningioma.Currently, there is no established therapeutic option for high-grade meningioma recurring after surgery and radiotherapy, and few chemotherapeutic agents are in development for the treatment of high-grade meningioma. Here in this study, we screened a panel of chemotherapeutic agents for their possible antitumor activity in high-grade meningioma and discovered that high-grade meningioma cells show a preferential sensitivity to antimetabolites, in particular, to gemcitabine. In vitro, gemcitabine inhibited the growth of high-grade meningioma cells effectively by inducing S-phase arrest and apoptotic cell death. In vivo, systemic gemcitabine chemotherapy suppressed not only tumor initiation but also inhibited the growth and achieved a long-term control of established tumors in xenograft models of high-grade meningioma. Histological analysis indicated that systemic gemcitabine blocks cell cycle progression and promotes apoptotic cell death in tumor cells in vivo. Together, our data demonstrate that gemcitabine exerts potent antitumor activity against high-grade meningioma through cytostatic and cytotoxic mechanisms. We therefore propose gemcitabine is a promising chemotherapeutic agent that warrants further investigation as a treatment option for high-grade meningioma.

Collaboration


Dive into the Kenta Kuramoto's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Congcong He

Northwestern University

View shared research outputs
Researchain Logo
Decentralizing Knowledge